

Triangles

Exercise- 7.3

"An Innovative Practice Methodology by IlTians."

Q.1 Δ ABC and Δ DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See figure). If AD is extended to intersect BC at P, show that:

(i) $\triangle ABD \cong \triangle ACD$

(ii) $\triangle ABP \cong \triangle ACP$

(iii) AP bisects \angle A as well as \angle D.

(iv) AP is the perpendicular bisector of BC.

```
Ans. (i) \triangle ABC is an isosceles triangle.
```

```
\therefore AB = AC
```

```
\Delta DBC is an isosceles triangle.
```

```
\therefore BD = CD
```

Now in \triangle ABD and \triangle ACD,

```
AB = AC [Given]
```

```
BD = CD [Given]
```

```
AD = AD [Common]
```

```
\therefore \ \Delta \text{ABD} \cong \Delta \text{ACD} [By SSS congruency]
```

```
\Rightarrow \angle BAD = \angle CAD [By C.P.C.T.] \dots(i)
```

```
(ii) Now in \triangle ABP and \triangle ACP,
```

AB = AC [Given]

```
\angle BAD = \angle CAD [From eq. (i)]
```

```
AP = AP
```

```
\therefore \ \Delta ABP \cong \ \Delta ACP \ [By SAS \ congruency]
```

```
(iii) Since ABP ACP [From part (ii)]
```

```
\Rightarrow \angle BAP = \angle CAP [By C.P.C.T.]
```

```
\Rightarrow AP bisects \angle A.
```

Since $\triangle ABD \cong \triangle ACD$ [From part (i)]

```
\Rightarrow \angle ADB = \angle ADC [By C.P.C.T.] \dots(ii)
```

Now \angle ADB + \angle BDP = [Linear pair](iii) And \angle ADC + \angle CDP = [Linear pair] (iv) From eq. (iii) and (iv), \angle ADB + \angle BDP = \angle ADC + \angle CDP $\Rightarrow \angle ADB + \angle BDP = \angle ADB + \angle CDP [Using (ii)]$ $\Rightarrow \angle BDP = \angle CDP$ \Rightarrow DP bisects D or AP bisects D. (iv) Since \triangle ABP $\cong \triangle$ ACP [From part (ii)] \therefore BP = PC [By C.P.C.T.](v) And $\angle APB = \angle APC$ [By C.P.C.T.] (vi) Now $\angle APB + \angle APC = 180^{\circ}$ [Linear pair] $\Rightarrow \angle APB + \angle APC = 180^{\circ}$ [Using eq. (vi)] $\Rightarrow 2 \angle APB = 180^{\circ}$ $\Rightarrow APB = 90^{\circ}$ \Rightarrow AP \perp BC (vii) From eq. (v), we have BP PC and from (vii), we have proved AP \perp B. So, collectively AP is perpendicular bisector of BC.

Q.2 AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that:

(i) AD bisects BC.

(ii) AD bisects $\angle A$.

Ans. In \triangle ABD and \triangle ACD,

AB = AC [Given]

 $\angle ADB = \angle ADC = 90^{\circ} [AD \perp BC]$

AD = AD [Common]

 $\therefore \Delta ABD \cong ACD [RHS rule of congruency]$

 \Rightarrow BD = DC [By C.P.C.T.]

- ⇒ AD bisects BC Also \angle BAD = \angle CAD [By C.P.C.T.]
- \Rightarrow AD bisects \angle A.
- **Q.3** Two sides AB and BC and median AM of the triangle ABC are respectively equal to side PQ and QR and median PN of Δ PQR (See figure). Show that:

- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$
- **Ans.** AM is the median of \triangle ABC.

$$\therefore BM = MC = \frac{1}{2} BC \dots \dots \dots (i)$$

PN is the median of PQR.

$$\therefore \text{QN} = \text{NR} = \frac{1}{2} \text{QR} \dots \dots \dots \dots (\text{ii})$$

Now BC = QR [Given]
$$\frac{1}{2}$$
 BC = QR

 $\therefore BM = QN \dots (iii)$

```
(i) Now in \Delta ABM and \Delta PQN,
```

- AB = PQ [Given]
- AM <mark>= PN [Giv</mark>en]
- BM = QN [From eq. (iii)]
- $\therefore \Delta ABM \cong \Delta PQN [By SSS congruency]$

$$\Rightarrow \angle B = \angle Q [By C.P.C.T.] \dots (iv)$$

(ii) In \triangle ABC and \triangle PQR,

$$AB = PQ [Given]$$

 $\angle B = \angle Q$ [Prove above]

BC = QR [Given]

 $\therefore \Delta ABC \cong \Delta PQR [By SAS congruency]$

- **Q.4** BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- **Ans.** In \triangle BEC and \triangle CFB,

 \angle BEC = \angle CFB [Each 90°] BC = BC [Common] BE = CF [Given] $\therefore \Delta$ BEC $\cong \Delta$ CFB [RHS congruency] \Rightarrow EC = FB [By C.P.C.T.] (i) Now In \triangle AEB and \triangle AFC \angle AEB = \angle AFC [Each 90°] \angle A = \angle A [Common] BE = CF [Given] $\therefore \Delta$ AEB $\cong \Delta$ AFC [ASA congruency] \Rightarrow AE = AF [By C.P.C.T.](ii) Adding eq. (i) and (ii), we get, EC + AE = FB + AF \Rightarrow AB = AC \Rightarrow ABC is an isosceles triangle.

Q.5 ABC is an isosceles triangle with AB = AC. Draw $AP \parallel BC$ and show that $\angle B = \angle C$.

Ans. Given: ABC is an isosceles triangle in which AB = AC

To prove: $\angle B = \angle C$ Construction: Draw AP \perp BC

```
Proof: In \triangle ABP and \triangle ACP

\angle APB = \angle APC =90° [By construction]

AB = AC [Given]

AP = AP [Common]

\therefore \triangle ABP \cong \triangle ACP [RHS congruency]

\Rightarrow \angle B = \angle C [By C.P.C.T.]
```