SpeedLabs MATHS

CBSE $9^{\text {th }}$ TEEVRA EDUTECH PVT. LTD.

Exercise- 7.3

Q. $1 \quad \Delta \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See figure). If AD is extended to intersect BC at P , show that:

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AP is the perpendicular bisector of BC .

Ans. (i) $\Delta A B C$ is an isosceles triangle.
$\therefore \mathrm{AB}=\mathrm{AC}$
$\Delta \mathrm{DBC}$ is an isosceles triangle.
$\therefore \mathrm{BD}=\mathrm{CD}$
Now in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\mathrm{BD}=\mathrm{CD}$ [Given]
$\mathrm{AD}=\mathrm{AD}$ [Common]
$\therefore \Delta \mathrm{ABD} \cong \triangle \mathrm{ACD}$ [By SSS congruency]
$\Rightarrow \angle \mathrm{BAD}=\angle \mathrm{CAD}$ [By C.P.C.T.]
(ii) Now in $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$,
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$ [From eq. (i)]
$\mathrm{AP}=\mathrm{AP}$
$\therefore \quad \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$ [By SAS congruency]
(iii) Since ABP ACP [From part (ii)]
$\Rightarrow \angle \mathrm{BAP}=\angle \mathrm{CAP}$ [By C.P.C.T.]
$\Rightarrow \mathrm{AP}$ bisects $\angle \mathrm{A}$.
Since $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ [From part (i)]
$\Rightarrow \angle \mathrm{ADB}=\angle \mathrm{ADC}$ [By C.P.C.T.]

Now $\angle \mathrm{ADB}+\angle \mathrm{BDP}=$ [Linear pair] (iii)

And $\angle \mathrm{ADC}+\angle \mathrm{CDP}=$ [Linear pair]
From eq. (iii) and (iv),
$\angle \mathrm{ADB}+\angle \mathrm{BDP}=\angle \mathrm{ADC}+\angle \mathrm{CDP}$
$\Rightarrow \angle \mathrm{ADB}+\angle \mathrm{BDP}=\angle \mathrm{ADB}+\angle \mathrm{CDP}$ [Using (ii)]
$\Rightarrow \angle \mathrm{BDP}=\angle \mathrm{CDP}$
\Rightarrow DP bisects D or AP bisects D .
(iv) Since $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$ [From part (ii)]
$\therefore \mathrm{BP}=\mathrm{PC}$ [By C.P.C.T.] \qquad (v)

And $\angle \mathrm{APB}=\angle \mathrm{APC}$ [By C.P.C.T.]
Now $\angle \mathrm{APB}+\angle \mathrm{APC}=180^{\circ}$ [Linear pair]
$\Rightarrow \angle \mathrm{APB}+\angle \mathrm{APC}=180^{\circ}$ [Using eq. (vi)]
$\Rightarrow 2 \angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \mathrm{APB}=90^{\circ}$
$\Rightarrow \mathrm{AP} \perp \mathrm{BC}$ \qquad (vii)

From eq. (v), we have BP PC and from (vii), we have proved AP \perp B. So, collectively AP is perpendicular bisector of BC.
Q. $2 \quad A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that:
(i) AD bisects BC .
(ii) AD bisects $\angle \mathrm{A}$.

Ans. $\quad \operatorname{In} \triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}[\mathrm{AD} \perp \mathrm{BC}]$

$\mathrm{AD}=\mathrm{AD}$ [Common]
$\therefore \Delta \mathrm{ABD} \cong \mathrm{ACD}$ [RHS rule of congruency]
$\Rightarrow \mathrm{BD}=\mathrm{DC}$ [By C.P.C.T.]
\Rightarrow AD bisects BC
Also $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ [By C.P.C.T.]
$\Rightarrow \mathrm{AD}$ bisects $\angle \mathrm{A}$.
Q. 3 Two sides AB and BC and median AM of the triangle ABC are respectively equal to side PQ and QR and median PN of $\triangle \mathrm{PQR}$ (See figure). Show that:

(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Ans. $\quad \mathrm{AM}$ is the median of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{BM}=\mathrm{MC}=\frac{1}{2} \mathrm{BC}$
$P N$ is the median of $P Q R$.
$\therefore \mathrm{QN}=\mathrm{NR}=\frac{1}{2} \mathrm{QR}$
Now $\mathrm{BC}=\mathrm{QR}$ [Given] $\frac{1}{2} \quad \mathrm{BC}=\mathrm{QR}$
$\therefore \mathrm{BM}=\mathrm{QN}$ \qquad
(i) Now in $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
$\mathrm{AB}=\mathrm{PQ}$ [Given]
$\mathrm{AM}=\mathrm{PN}$ [Given]
$B M=Q N$ [From eq. (iii)]
$\therefore \quad \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$ [By SSS congruency]
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{Q}$ [By C.P.C.T.]
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\mathrm{AB}=\mathrm{PQ}$ [Given]
$\angle B=\angle Q$ [Prove above]
$\mathrm{BC}=\mathrm{QR}$ [Given]
$\therefore \Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}$ [By SAS congruency]
Q. $4 \quad \mathrm{BE}$ and CF are two equal altitudes of a triangle ABC . Using RHS congruence rule, prove that the triangle ABC is isosceles.

Ans. In $\Delta \mathrm{BEC}$ and $\triangle \mathrm{CFB}$,

$\angle \mathrm{BEC}=\angle \mathrm{CFB}\left[\right.$ Each $\left.90^{\circ}\right]$
$\mathrm{BC}=\mathrm{BC}$ [Common]
$\mathrm{BE}=\mathrm{CF}$ [Given]
$\therefore \Delta \mathrm{BEC} \cong \Delta \mathrm{CFB}$ [RHS congruency]
$\Rightarrow \mathrm{EC}=\mathrm{FB}$ [By C.P.C.T.]
Now In \triangle AEB and $\triangle \mathrm{AFC}$
$\angle \mathrm{AEB}=\angle \mathrm{AFC}\left[\right.$ Each $\left.90^{\circ}\right]$
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common]
$\mathrm{BE}=\mathrm{CF}$ [Given]
$\therefore \Delta \mathrm{AEB} \cong \Delta \mathrm{AFC}$ [ASA congruency]
$\Rightarrow \mathrm{AE}=\mathrm{AF}$ [By C.P.C.T.]
Adding eq. (i) and (ii), we get,
$\mathrm{EC}+\mathrm{AE}=\mathrm{FB}+\mathrm{AF}$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$
$\Rightarrow A B C$ is an isosceles triangle.
Q. $5 \quad \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $\mathrm{AP} \| \mathrm{BC}$ and show that $\angle \mathrm{B}=\angle \mathrm{C}$.

Ans. Given: ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$

To prove: $\angle \mathrm{B}=\angle \mathrm{C}$
Construction: Draw AP \perp BC

Proof: In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{ACP}$
$\angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}$ [By construction]
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\mathrm{AP}=\mathrm{AP}$ [Common]
$\therefore \Delta \mathrm{ABP} \cong \triangle \mathrm{ACP}$ [RHS congruency]
$\Rightarrow \angle B=\angle C$ [By C.P.C.T.]

