SpeedLabs MATHS

CBSE $12^{\text {th }}$
TEEVRA EDUTECH PVT. LTD.

1. Let $\mathrm{f}:\{1,3,4\} \rightarrow\{1,2,5\}$ and $\mathrm{g}:\{1,2,5\} \rightarrow\{1,3\}$ be given by $\mathrm{f}=\{(1,2),(3,5),(4,1)\}$ and $\mathrm{g}=\{(1,3),(2,3)$, $(5,1)\}$. Write down gof.
Ans. The functions f: $\{1,3,4\} \rightarrow\{1,2,5\}$ and $\mathrm{g}:\{1,2,5\} \rightarrow\{1,3\}$ are defined as

$$
\begin{array}{ll}
f=\{(1,2),(3,5),(4,1)\} \text { and } g=\{(1,3),(2,3),(5,1)\} . \\
\text { gof }(1)=g(f(1))=g(2)=3 & {[f(1)=2 \text { and } g(2)=3]} \\
\operatorname{gof}(3)=g(f(3))=g(5)=1 & {[f(3)=5 \text { and } g(5)=1]} \\
\operatorname{gof}(4)=g(f(4))=g(1)=3 & {[f(4)=1 \text { and } g(1)=3]} \\
\therefore \text { gof }=\{(1,3),(3,1),(4,) 3)\} &
\end{array}
$$

2. Let f, g and h be functions from R to R. Show that
$(\mathrm{f}+\mathrm{g}) \mathrm{oh}=\mathrm{foh}+\mathrm{goh}$
$(\mathrm{f} . \mathrm{g}) \mathrm{oh}=(\mathrm{foh}) \cdot(\mathrm{goh})$
Ans. To prove:
$(f+g)$ oh $=$ foh + goh
Consider:
$((\mathrm{f}+\mathrm{g}) \mathrm{oh})(\mathrm{x})$
$=(\mathrm{f}+\mathrm{g})(\mathrm{h}(\mathrm{x})$
$=\mathrm{f}(\mathrm{h}(\mathrm{x}))+\mathrm{g}(\mathrm{g}(\mathrm{x}))$
$=($ foh $)(\mathrm{x})+($ goh $)(\mathrm{x})$
$=\{($ foh $)+($ goh $)\}(\mathrm{x})$
$((\mathrm{f}+\mathrm{g}) \mathrm{oh})(\mathrm{x})=\{($ foh $)+($ goh $)\}(\mathrm{x}) \quad \forall \mathrm{x} \mathbf{R}$
Hence $(f+g)$ oh $=$ foh + goh .
To prove:

$$
(\mathrm{f} \cdot \mathrm{~g}) \mathrm{oh}=(\mathrm{foh}) \cdot(\mathrm{goh})
$$

Consider:
$((\mathrm{f} \cdot \mathrm{g}) \mathrm{oh})(\mathrm{x})$
$=(\mathrm{f} \cdot \mathrm{g})(\mathrm{h}(\mathrm{x}))$
$=\mathrm{f}(\mathrm{h}(\mathrm{x})) \cdot \mathrm{g}(\mathrm{h}(\mathrm{x}))$
$=($ foh $)(\mathrm{x}) \cdot($ goh $)(\mathrm{x})$
$=\{($ foh $)($ goh $)\}(\mathrm{x})$
$\therefore((\mathrm{f} \cdot \mathrm{g}) \mathrm{oh})(\mathrm{x})=\{($ goh $) \cdot($ goh $)\}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{R}$
Hence, $(\mathrm{f} \cdot \mathrm{g}) \mathrm{oh}=(\mathrm{foh}) \cdot(\mathrm{goh})$.
3. Find gof and fog, if
(i) $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=|5 \mathrm{x}-2|$
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

Ans. $\quad(i) f(x)=|x|$ and $g(x)=|5 x-2|$

$$
\begin{aligned}
& \therefore(\text { gof })(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(|\mathrm{x}|)=|5| \mathrm{x}|-2| \\
& (\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{~g}(\mathrm{x}))=\mathrm{f}(|5 \mathrm{x}-2|)=||5 \mathrm{x}-2||=|5 \mathrm{x}-2|
\end{aligned}
$$

(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

$$
\begin{aligned}
& \therefore(\operatorname{gof})(x)=g(f(x))=g\left(8 x^{3}\right)=\left(8 x^{3}\right)^{\frac{1}{3}}=2 x \\
& (f o g)(x)=f(g(x))=f\left(x^{\frac{1}{3}}\right)=8 x\left(x^{\frac{1}{3}}\right)^{3}=8 x
\end{aligned}
$$

4. If $\mathrm{f}(\mathrm{x})=\frac{(4 \mathrm{x}+3)}{(6 \mathrm{x}-4)}, \mathrm{x} \neq \frac{2}{3}$, show that f o $\mathrm{f}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \neq \frac{2}{3}$. What is the inverse of f ?

Ans. It is given that $f(x)=\frac{(4 x+3)}{(6 x-4)}, x \neq \frac{2}{3}$
$(f \circ f)(x)=f(f(x))=f\left(\frac{4 x+3}{6 x-4}\right)$
$=\frac{\left(\frac{4 x+3}{6 x-4}\right)+3}{\left(\frac{6 x+3}{6 x-4}\right)-4}=\frac{16 x+12+18 x-12}{24 x+18-24 x+16}=\frac{34 x}{34}=x$
Therefore, fof $(x)=x$, for all $x \neq \frac{2}{3}$.
$\Rightarrow \mathrm{fof}=\mathrm{I}$
Hence, the given function f is invertible and the inverse of f is f itself.
5. State with reason whether following functions have inverse
(i) f: $\{1,2,3,4\} \rightarrow\{10\}$ with
$f=\{(1,10),(2,10),(3,10),(4,10)\}$
(ii) $\mathrm{g}:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with
$g=\{(5,4),(6,3),(7,4),(8,2)\}$
(iii) h: $\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with
$\mathrm{h}=\{(2,7),(3,9),(4,11),(5,13)\}$
Ans. (i) f: $\{1,2,3,4\} \rightarrow\{10\}$ defined as:
$f=\{(1,10),(2,10),(3,10),(4,10)\}$
From the given definition of f, we can see that f is a many one function as: $f(1)=f(2)=$
$\mathrm{f}(3)=\mathrm{f}(4)=10$
$\therefore f$ is not one-one.
Hence, function f does not have an inverse.
(ii) g: $\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ defined as:
$\mathrm{g}=\{(5,4),(6,3),(7,4),(8,2)\}$
From the given definition of g , it is seen that g is a many one function as: $\mathrm{g}(5)=\mathrm{g}(7)=$ 4.
$\therefore g$ is not one-one,
Hence, function g does not have an inverse.
(iii) $\mathrm{h}:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ defined as:
$\mathrm{h}=\{(2,7),(3,9),(4,11),(5,13)\}$
It is seen that all distinct elements of the set $\{2,3,4,5\}$ have distinct images under h.
\therefore Function h is one-one.
Also, h is onto since for every element y of the set $\{7,9,11,13\}$, there exists an
element x in the set $\{2,3,4,5\}$ such that $h(x)=y$.
Thus, h is a one-one and onto function. Hence, h has an inverse.
6. Show that $f:[-1,1] \rightarrow R$, given by is $f(x)=\frac{x}{(x+2)}$ one-one. Find the inverse of the function $f:[-1,1] \rightarrow$ Range f.
(Hint: For $\mathrm{y} \in$ Range $\mathrm{f}, \mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{(\mathrm{x}+2)}$ for some x in $[-1,1]$, i.e., $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{(\mathrm{x}+2)}$
Ans. $\quad f:[-1,1] \rightarrow R$ is given as $f(x)=\frac{x}{(x+2)}$
$f:[-1,1] \rightarrow R$ is given as
Let $f(x)=f(y)$.
$\Rightarrow \frac{x}{x+2}=\frac{y}{y+2}$
$\Rightarrow \mathrm{xy}+2 \mathrm{x}=\mathrm{xy}+2 \mathrm{y}$
$\Rightarrow 2 \mathrm{x}=2 \mathrm{y}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
$\therefore \mathrm{f}$ is a one-one function.
It is clear that $\mathrm{f}:[-1,1] \rightarrow$ Range f is onto.
$\therefore \mathrm{f}:[-1,1] \rightarrow$ Range f is one-one and onto and therefore, the inverse of the function:
$\mathrm{f}:[-1,1] \rightarrow$ Range f exists.
Let g : Range $f \rightarrow[-1,1]$ be the inverse of f.
Let y be an arbitrary element of range f.
Since $f:[-1,1] \rightarrow$ Range f is onto, we have:
$y=f(x)$ for same $x \in[-1,1]$
$\Rightarrow y=\frac{x}{x+2}$
$\Rightarrow x y+2 y=x$
$\Rightarrow \mathrm{x}(1-\mathrm{y})=\mathrm{x}$
$\Rightarrow x=\frac{2 y}{1-y}, y \neq 1$.
Now, let us define g: Range $\mathrm{f} \rightarrow[-1,1]$ as
$g(y)=\frac{2 y}{1-y}, y \neq 1$.
Now, $(\operatorname{gof})(x)=g(f(x))=g\left(\frac{2 y}{1-y}\right)=\frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}}=\frac{2 x}{x+2-x}=\frac{2 x}{2}=x$
$(f \circ g)(y)=f(g(y))=f\left(\frac{2 y}{1-y}\right)=\frac{\frac{2 y}{1-y}}{\frac{2 y}{1-y}+2}=\frac{2 y}{2 y+2-2 y}=\frac{2 y}{2}=y$
\therefore gof $=\mathrm{I}_{[-1,1]}$ and fog $=\mathrm{I}_{\text {Range } \mathrm{f}}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{y})=\frac{2 \mathrm{y}}{1-\mathrm{y}}, \mathrm{y} \neq 1$
7. Consider $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$. Show that f is invertible. Find the inverse of f .

Ans. $f: R \rightarrow R$ is given by,
$f(x)=4 x+3$
One-one:
Let $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$.
$\Rightarrow 4 \mathrm{x}+3=4 \mathrm{y}+3$
$\Rightarrow 4 \mathrm{x}=4 \mathrm{y}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
$\therefore \mathrm{f}$ is a one-one function.
Onto:
For $\mathrm{y} \in \mathrm{R}$, let $\mathrm{y}=4 \mathrm{x}+3$.
$\Rightarrow \mathrm{x}=\frac{\mathrm{y}-3}{4} \in \mathbf{R}$
Therefore, for any $y \in R$, there exists $x=\frac{y-3}{4} \in R$ such that
$\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\frac{\mathrm{y}-3}{4}\right)=4\left(\frac{\mathrm{y}-3}{4}\right)+3=\mathrm{y}$.
$\therefore \mathrm{f}$ is onto.
Thus, f is one-one and onto and therefore, f^{-1} exists.
Let us define $g: R \rightarrow R$ by $(g)=\frac{y-3}{4}$
Now, $(\operatorname{gof})(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3)-3}{4}=x$
$(f o g)(y)=f(g(y))=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y-3+3=7$
\therefore gof $=\mathrm{fog}=\mathrm{I}_{\mathrm{R}}$
Hence, f is invertible and the inverse of f is given by
$f^{-1}(y)=g(y)=\frac{y-3}{4}$.
8. Consider $f: R_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y)=\sqrt{y-4}$, where $R+$ is the set of all non-negative real numbers.
Ans. $\quad f: R+[4, \infty)$ is given as $f(x)=x^{2}+4$.
One-one:
Let $f(x)=f(y)$.

$$
\Rightarrow x^{2}+4=y^{2}+4
$$

$\Rightarrow x^{2}=y^{2}$
$\Rightarrow \mathrm{x}=\mathrm{y} \quad[\mathrm{as} \mathrm{x}=\mathrm{y} \in \mathbf{R}$,
$\therefore \mathrm{f}$ is a one-one function.
Onto:
For $\mathrm{y} \in[4, \infty)$, let $\mathrm{y}=\mathrm{x}^{2}+4$.
$\Rightarrow x^{2}=y-4 \geq 0 \quad[$ as $y \geq 4]$
$\Rightarrow \mathrm{x}=\sqrt{\mathrm{y}-4} \geq 0$
Therefore, for any $y \in R$, there exists $x=\sqrt{y-4} \in R$ such that
$f(x)=f(\sqrt{y-4})=(\sqrt{y-4})^{2}+4=y-4+4=y$.
$\therefore \mathrm{f}$ is onto.
Thus, f is one-one and onto and therefore, f^{-1} exists.
Let us define g: $[4, \infty) \rightarrow \mathbf{R}+$ by,
Now. gof $(x)=g(f(x))=g\left(x^{2}+4\right)=\sqrt{\left(x^{2}+4\right)-4}=\sqrt{x^{2}}=x$
And. fog $(y)=f(g(y))=f(\sqrt{y-4})=(\sqrt{y-4})^{2}+4=(y-4)+4=y$
\therefore gof $=\mathrm{fog}=\mathrm{I}_{\mathrm{R}+}$
Hence, f is invertible and the inverse of f is given by
$f^{-1}(y)=g(y)=\sqrt{y-4}$.
9. Consider f: $R_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{(y+6)-1}{3}\right)$

Ans. $\quad f: R_{+} \rightarrow[-5, \infty)$ is given as $f(x)=9 x^{2}+6 x-5$.
Let y be an arbitrary element of $[-5, \infty)$.
Let $y=9 x^{2}+6 x-5$.
$\Rightarrow \mathrm{y}=(3 \mathrm{x}+1)^{2}-1-5=(3 \mathrm{x}+1)^{2}-6$
$\Rightarrow(3 x+1)^{2}=y+6$
$\Rightarrow 3 \mathrm{x}+=\sqrt{\mathrm{y}+1} \quad[$ as $\mathrm{y} \geq-5 \Rightarrow \mathrm{y}+6>0$]
$\Rightarrow x=\frac{\sqrt{y+6}-1}{3}$
$\therefore f$ is onto, thereby range $f=[-5, \infty)$.
Let us define $\mathrm{g}:[-5, \infty) \rightarrow \mathrm{R}_{+}$as $g(y)=\frac{\sqrt{y+6}-1}{3}$
We now have:
$($ gof $)(x)=g(f(x))=g\left(9 x^{2}+6 x-5\right)$
$=g\left((3 x+1)^{2}-6\right)$
$=\frac{\sqrt{(3 x+1)^{2}-6+6}-1}{3}$
$=\frac{3 x+1-1}{3}=x$
And, $(f o g)(y)=f(g(y))=f=\left(\frac{\sqrt{y+6}-1}{3}\right)$
$=\left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^{2}-6$
$=(\sqrt{y+6})^{2}-6=y+6-6=y$
\therefore gof $=\mathrm{I}_{\mathrm{R}}$, and fog $=\mathrm{I}[-5, \infty)$
Hence, f is invertible and the inverse of f is given by
$f^{-1}(y) g(y)=\frac{\sqrt{y+6}-1}{3}$.
10. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function. Show that f has unique inverse.
(Hint: suppose g^{1} and g^{2} are two inverses of f. Then for all $y \in Y$,
$\operatorname{fog}_{1}(y)=I_{y}(y)=\operatorname{fog}_{2}(y)$. Use one-one ness of $\left.f\right)$.
Ans. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function.
Also, suppose f has two inverses (say t_{1} and g_{2}).
Then, for all $y \in Y$, we have:
$\operatorname{fog}_{1}(\mathrm{y})=\mathrm{I}_{\mathrm{y}}(\mathrm{y})=\operatorname{fog}_{2}(\mathrm{y})$
$\Rightarrow \mathrm{f}\left(\mathrm{g}_{1}(\mathrm{y})\right)=\mathrm{f}\left(\mathrm{g}_{2}(\mathrm{y})\right)$
$\Rightarrow g_{1}(y)=g_{2}(y) \quad[f$ is invertible $\Rightarrow f$ is one - one]
$\Rightarrow g_{1}=g_{2} \quad[g$ is one - one]
Hence, f has a unique inverse.
11. Consider $\mathrm{f}:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(\mathrm{f}^{-1}\right)^{-1}=\mathrm{f}$.
Ans. Function $f:\{1,2,3\} \rightarrow\{a, b, c\}$ is given by,
$\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)=\mathrm{b}$, and $\mathrm{f}(3)=\mathrm{c}$
If we define $\mathrm{g}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \rightarrow\{1,2,3\}$ as $\mathrm{g}(\mathrm{a})=1, \mathrm{~g}(\mathrm{~b})=2, \mathrm{~g}(\mathrm{c})=3$, then we have:
$(f o g)(a)=f(g(a))=f(1)=a$
$(f o g)(b)=f(g(b))=f(2)=b$
$(f o g)(c)=f(g(c))=f(3)=c$
And,
$(\mathrm{gof})(1)=\mathrm{g}(\mathrm{f}(1))=\mathrm{g}(\mathrm{a})=1$
$(\mathrm{gof})(2)=\mathrm{g}(\mathrm{f}(2))=\mathrm{g}(\mathrm{b})=2$
$(\mathrm{gof})(3)=\mathrm{g}(\mathrm{f}(3))=\mathrm{g}(\mathrm{c})=3$
\therefore gof $=I_{x}$ and fog $=I_{y}$, where $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.
Thus, the inverse of f exists and $\mathrm{f}^{-1}=\mathrm{g}$.
$\therefore f^{-1}:\{a, b, c\} \rightarrow\{1,2,3\}$ is given by,
$\mathrm{f}^{-1}(\mathrm{a})=1, \mathrm{f}^{-1}(\mathrm{~b})=2, \mathrm{f}^{-1}(\mathrm{c})=3$
Let us now find the inverse of f^{-1} i.e., find the inverse of g.
If we define $h:\{1,2,3\} \rightarrow\{a, b, c\}$ as
$h(1)=a, h(2)=b, h(3)=c$, then we have:
$(g o h)(1)=g(h(1))=g(a)=1$
$($ goh $)(2)=g(h(2))=g(b)=2$
$(\operatorname{goh})(3)=g(h(3))=g(c)=3$
And
$(\operatorname{hog})(a)=h((a))=h(1)=a$
$(\operatorname{hog})(b)=h((b))=h(2)=b$
$(\operatorname{hog})(c)=h((c))=h(3)=c$
$\therefore \operatorname{goh} \mathrm{I}_{\mathrm{x}}$ and $\operatorname{hog} \mathrm{I}_{\mathrm{y}}$, where $\mathrm{X}=\{1,2,3\}$ and $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Thus, the inverse of g exists and $\mathrm{g}^{-1}=\mathrm{h} \Rightarrow\left(\mathrm{f}^{-1}\right)^{-1}=\mathrm{h}$.
It can be noted that $\mathrm{h}=\mathrm{f}$.
Hence, $\left(\mathrm{f}^{-1}\right)^{-1}=\mathrm{f}$.
12. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function. Show that the inverse of f^{-1} is f , i.e., $\left(\mathrm{f}^{-1}\right)^{-1}=\mathrm{f}$.

Ans. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function.
Then, there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=\mathrm{IX}$ and $\mathrm{fog}=\mathrm{I} \mathrm{Y}$.
Here, $\mathrm{f}-1=\mathrm{g}$.
Now, gof $=I_{x}$ and fog $=I_{Y}$
$\Rightarrow \mathrm{f}^{-1} \mathrm{of}=\mathrm{I}_{\mathrm{X}}$ and $\mathrm{fof}^{-1}=\mathrm{I}_{\mathrm{Y}}$
Hence, $f-1: Y \rightarrow X$ is invertible and f is the inverse of f^{-1}
i.e., $\left(f^{-1}\right)^{-1}=f$.
13. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$, then $f o f(x)$ is
(A) $\frac{1}{\mathrm{x}^{3}}$
(B) x^{3}
(C) x
(D) $\left(3-x^{3}\right)$

Ans. $\quad f: R \rightarrow R$ is given as $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$

$$
\begin{aligned}
& \therefore f o f(x)=f(f(x))=f\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)=\left[3-\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{3}} \\
& =\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}}=\left(x^{3}\right)^{\frac{1}{3}}=x \\
& \therefore \operatorname{fof}(x)=x
\end{aligned}
$$

The correct answer is C.
14. Let $\mathrm{f}: \mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathrm{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$. The inverse of f is map g :

Range f: $\mathbf{R}-\left\{-\frac{4}{3}\right\} \rightarrow$ given by
(A) $g(y)=\frac{3 y}{3-4 y}$
(B) $g(y)=\frac{4 y}{4-3 y}$
(C) $g(y)=\frac{4 y}{3-4 y}$
(D) $g(y)=\frac{3 y}{4-3 y}$

Ans. It is given that $\mathrm{f}: \mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathrm{R}$ is definedasf $(\mathrm{x})=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$.
Let y be an arbitrary element of Range f.
Then, there exists $x \in R-\left\{-\frac{4}{3}\right\}$ such that. $y=f(x)$.
$\Rightarrow y=\frac{4 x}{3 x+4}$
$\Rightarrow 3 x y+4 y=4 x$
$\Rightarrow \mathrm{x}(3-3 \mathrm{y})=4 \mathrm{y}$ let us define $\mathrm{g}:$ Range $\mathrm{f} \rightarrow \mathrm{R}-\left\{-\frac{4}{3}\right\}$ as $\mathrm{g}(\mathrm{y})=\frac{4 \mathrm{y}}{4-3 \mathrm{y}}$.
$\Rightarrow x=\frac{4 y}{4-3 y}$
$($ gof $)(x)=g(f(x))=g\left(\frac{4 x}{3 x+4}\right)$
Now,
$=\frac{4\left(\frac{4 x}{3 x+4}\right)}{4-3\left(\frac{4 x}{3 x+4}\right)}=\frac{16 x}{12 x+16-12}=\frac{16 x}{16}=x$
and, $(f \circ g)(y)=f(g(y))=f\left(\frac{4 y}{4-3 y}\right)$
$=\frac{4\left(\frac{4 y}{4+3 y}\right)}{3\left(\frac{4 y}{4-3 y}\right)+4}=\frac{16 x}{12 y+16-12 y}=\frac{16 y}{16}=y$
\therefore gof $=\mathrm{I}_{\mathrm{R}-\left\{-\frac{4}{3}\right\}}$ andfog $=\mathrm{I}_{\text {Rangef }}$
Thus, g is the inverse of f i.e., $f^{-1}=g$.
Hence, the inverse of f is the map g : Range $f \rightarrow R-\left\{-\frac{4}{3}\right\}$, which is given by

$$
g(y)=\frac{4 y}{4-3 y}
$$

The correct answer is B.

