

CBSE 12th

TEEVRA EDUTECH PVT. LTD.

Relations and Functions Exercise -1.3

Assisted Practice | Expert Guidance | Personalized Insights "An Innovative Practice Methodology by IlTians."

Let f: $\{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and g: $\{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (2, 3), (2, 3), (2, 3), (3, 5), (4, 1)\}$ 1. (5, 1). Write down gof. The functions f: $\{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and g: $\{1, 2, 5\} \rightarrow \{1, 3\}$ are defined as Ans. $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. $\int f(1) = 2 \text{ and } g(2) = 3$ gof(1) = g(f(1)) = g(2) = 3 $\left[f(3) = 5 \text{ and } g(5) = 1 \right]$ gof(3) = g(f(3)) = g(5) = 1 $\operatorname{gof}(4) = g(f(4)) = g(1) = 3$ $\int f(4) = 1 \text{ and } g(1) = 3$ \therefore gof = {(1,3), (3,1), (4,)3)} 2. Let f, g and h be functions from R to R. Show that (f + g)oh = foh + goh(f.g) oh = (foh).(goh)To prove: Ans. (f + g) oh = foh + gohConsider: $\left(\left(f + g\right)oh\right)(x)$ = (f + g)(h(x))= f(h(x)) + g(g(x))= (foh)(x) + (goh)(x) $= {(foh) + (goh)}(x)$ $((f + g)oh)(x) = {(foh) + (goh)}(x)$ $\forall \mathbf{x} \mathbf{R}$ Hence (f + g) oh = foh + goh. To prove: $(f \cdot g)oh = (foh) \cdot (goh)$

Consider:

$$\begin{pmatrix} (f \cdot g)oh)(x) \\ = (f \cdot g)(h(x)) \\ = f(h(x)) \cdot g(h(x)) \\ = (foh)(x) \cdot (goh)(x) \\ = \{(foh)(goh)\}(x) \\ \therefore ((f \cdot g)oh)(x) = \{(goh) \cdot (goh)\}(x) \forall x \in \mathbb{R} \\ \text{Hence, } (f \cdot g)oh = (foh) \cdot (goh). \\ 3. \quad \text{Find gof and fog, if} \\ (i) f(x) = |x| \text{ and } g(x) = |5x - 2| \\ (ii) f(x) = 8x^3 \text{ and } g(x) = x^{\frac{1}{3}} \\ \text{Ans.} \quad (i) f(x) = |x| \text{ and } g(x) = |5x - 2| \\ \therefore (gof)(x) = g(f(x)) = g(|x|) = |5|x| - 2| \\ (fog)(x) = f(g(x)) = f(|5x - 2|) = ||5x - 2| \\ (ii) f(x) = 8x^3 \text{ and } g(x) = x^{\frac{1}{3}} \\ \therefore (gof)(x) = g(f(x)) = g(8x^3) = (8x^3)^{\frac{1}{3}} = 2x \\ (fog)(x) = f(g(x)) = f\left(x^{\frac{1}{3}}\right) = 8x\left(x^{\frac{1}{3}}\right)^{\frac{3}{3}} = 8x \\ \text{4.} \quad \text{If } f(x) = \frac{(4x+3)}{(6x-4)}, x \neq \frac{2}{3}, \text{ show that f o } f(x) = x, \text{ for all } x \neq \frac{2}{3} \\ (fof)(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right) \\ \end{cases}$$

 $=\frac{\left(\frac{4x+3}{6x-4}\right)+3}{\left(\frac{6x+3}{6x-4}\right)-4}=\frac{16x+12+18x-12}{24x+18-24x+16}=\frac{34x}{34}=x$ Therefore, fof (x) = x, for all $x \neq \frac{2}{3}$. \Rightarrow fof = I Hence, the given function f is invertible and the inverse of f is f itself. 5. State with reason whether following functions have inverse (i) f: $\{1, 2, 3, 4\} \rightarrow \{10\}$ with $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ (ii) g: $\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ with $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ (iii) h: $\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ with $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$ Ans. (i) f: $\{1, 2, 3, 4\} \rightarrow \{10\}$ defined as: $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ From the given definition of f, we can see that f is a many one function as: f(1) = f(2) =f(3) = f(4) = 10∴f is not one-one. Hence, function f does not have an inverse. (ii) g: $\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ defined as: $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ From the given definition of g, it is seen that g is a many one function as: g(5) = g(7) =4. ∴g is not one-one, Hence, function g does not have an inverse. (iii) h: $\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ defined as: $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$ It is seen that all distinct elements of the set {2, 3, 4, 5} have distinct images under h. ∴Function h is one-one. Also, h is onto since for every element y of the set {7, 9, 11, 13}, there exists an element x in the set $\{2, 3, 4, 5\}$ such that h(x) = y. Thus, h is a one-one and onto function. Hence, h has an inverse. Show that f: $[-1, 1] \rightarrow \mathbf{R}$, given by is $f(x) = \frac{x}{(x+2)}$ one-one. Find the inverse of the function f: $[-1, 1] \rightarrow \mathbf{R}$ 6. Range f. 3

(Hint: For
$$y \in \text{Range f}, y = f(x) = \frac{x}{(x+2)}$$
 for some x in $[-1, 1]$, i.e., $f(x) = \frac{x}{(x+2)}$
Ans. f: $[-1, 1] \rightarrow \text{R}$ is given as $f(x) = \frac{x}{(x+2)}$
f: $[-1, 1] \rightarrow \text{R}$ is given as Let $f(x) = f(y)$.
 $\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$
 $\Rightarrow xy + 2x = xy + 2y$
 $\Rightarrow 2x = 2y$
 $\Rightarrow x = y$
 \therefore f is a one-one function.
It is clear that f: $[-1, 1] \rightarrow \text{Range f}$ is onto.
 \therefore f: $[-1, 1] \rightarrow \text{Range f}$ is one-one and onto and therefore, the inverse of the function:
f: $[-1, 1] \rightarrow \text{Range f}$ exists.
Let g: Range $f \rightarrow [-1, 1]$ be the inverse of f.
Let y be an arbitrary element of range f.
Since f: $[-1, 1] \rightarrow \text{Range f}$ is onto, we have:
 $y = f(x)$ for same $x \in [-1, 1]$
 $\Rightarrow y = \frac{x}{x+2}$
 $\Rightarrow xy + 2y = x$
 $\Rightarrow x(1 - y) = x$
 $\Rightarrow x = \frac{2y}{1 - y}, y \neq 1$.
Now, let us define g: Range $f \rightarrow [-1, 1]$ as
 $g(y) = \frac{2y}{1 - y}, y \neq 1$.
Now, $(\text{gof})(x) = g(f(x)) = g(\frac{2y}{1 - y}) = \frac{2(\frac{x}{x+2})}{1 - \frac{x}{x+2}} = \frac{2x}{x+2 - x} = \frac{2x}{2} = x$
 $(\text{fog})(y) = f(g(y)) = f(\frac{2y}{1 - y}) = \frac{\frac{2y}{1 - y}}{2 + \frac{2y}{1 - y} + 2} = \frac{2y}{2y + 2 - 2y} = \frac{2y}{2} = y$

∴ gof = $I_{[-1,1]}$ and fog = $I_{\text{Range f}}$ ⇒ $f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$

Consider f: $R \rightarrow R$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f. 7.

Ans. f: $\mathbf{R} \rightarrow \mathbf{R}$ is given by,

f(x) = 4x + 3One-one: Let f(x) = f(y). \Rightarrow 4x + 3 = 4y + 3 $\Rightarrow 4x = 4y$ $\Rightarrow x = y$ \therefore f is a one-one function. Onto: For $y \in \mathbf{R}$, let y = 4x + 3. $\Rightarrow x = \frac{y-3}{4} \in \mathbf{R}$

Therefore, for any $y \in \mathbb{R}$, there exists $x = \frac{y-3}{4} \in \mathbb{R}$ such that

$$f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y.$$

∴ f is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define g:
$$\mathbf{R} \rightarrow \mathbf{R}$$
 by (g) = $\frac{y-3}{4}$

Now,
$$(gof)(x) = g(f(x)) = g(4x+3) = \frac{(4x+3)-3}{4}$$

 \therefore gof = fog = I_R

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{y-3}{4}.$$

8.

8. Consider f:
$$\mathbf{R}_+ \to [4, \infty)$$
 given by $f(\mathbf{x}) = \mathbf{x}^2 + 4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(\mathbf{y}) = \sqrt{\mathbf{y} - 4}$, where \mathbf{R}_+ is the set of all non-negative real numbers
Ans. f: $\mathbf{R}_+ \to [4, \infty)$ is given as $f(\mathbf{x}) = \mathbf{x}^2 + 4$.

One-one:

Let f(x) = f(y).

$$\Rightarrow x^2 + 4 = y^2 + 4$$

= x

 $\Rightarrow x^2 = y^2$ $\Rightarrow x = y$ $[as x = y \in \mathbf{R},]$ \therefore f is a one-one function. Onto: For $y \in [4, \infty)$, let $y = x^2 + 4$. $\Rightarrow x^2 = y - 4 \ge 0$ [as $y \ge 4$] $\Rightarrow x = \sqrt{y - 4} \ge 0$ Therefore, for any $y \in \mathbf{R}$, there exists $x = \sqrt{y-4} \in \mathbf{R}$ such that $f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y - 4 + 4 = y.$ ∴ f is onto. Thus, f is one-one and onto and therefore, f^{-1} exists. Let us define g: $[4, \infty) \rightarrow \mathbf{R} + \mathbf{by}$, Now. gof (x) = g(f(x)) = g(x² + 4) = $\sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = x$ And, fog (y) = f (g(y)) = f($\sqrt{y-4}$) = $(\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$ \therefore gof = fo g = I_{R+} Hence, f is invertible and the inverse of f is given by $f^{-1}(y) = g(y) = \sqrt{y - 4}$. Consider f: $\mathbf{R}_+ \rightarrow [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{(y+6)-1}{3}\right)$ 9. f: $\mathbf{R}_+ \rightarrow [-5, \infty)$ is given as $f(\mathbf{x}) = 9\mathbf{x}^2 + 6\mathbf{x} - 5$. Ans. Let y be an arbitrary element of $[-5, \infty)$. Let $y = 9x^2 + 6x - 5$. $\Rightarrow y = (3x+1)^2 - 1 - 5 = (3x+1)^2 - 6$ $\Rightarrow (3x+1)^2 = y+6$ $\Rightarrow 3x + = \sqrt{y+1} \quad [as y \ge -5 \Rightarrow y+6 > 0]$ $\Rightarrow x = \frac{\sqrt{y+6}-1}{2}$ \therefore f is onto, thereby range f = [-5, ∞). Let us define g: $[-5, \infty) \rightarrow \mathbf{R}_+$ as $g(y) = \frac{\sqrt{y+6-1}}{3}$ We now have: $(gof)(x) = g(f(x)) = g(9x^2 + 6x - 5)$

$$=g((3x+1)^{2}-6)$$

$$=\frac{\sqrt{(3x+1)^{2}-6+6}-1}{3}$$

$$=\frac{3x+1-1}{3}=x$$
And, $(fog)(y) = f(g(y)) = f=(\frac{\sqrt{y+6}-1}{3})$

$$=\left[3(\frac{\sqrt{y+6}-1}{3})+1\right]^{2}-6$$

$$=(\sqrt{y+6})^{2}-6=y+6-6=y$$
 \therefore gof = I_R and fog = 1 [-5, ∞)
Hence, f is invertible and the inverse of f is given by
f⁻¹(y) g(y) = $\frac{\sqrt{y+6}-1}{3}$.
10. Let f: X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g^{1} and g^{2} are two inverses of f. Then for all $y \in Y$,
fog₁(y) = $I_{y}(y) = fog_{2}(y)$. Use one-one ness of f.
Ans. Let f: X → Y be an invertible function.
Also, suppose f has two inverses (say t₁ and g₂).
Then, for all $y \in Y$, we have:
fog₁(y) = $I_{y}(y) = fog_{2}(y)$
 $\Rightarrow f(g_{1}(y)) = f(g_{2}(y))$
 $\Rightarrow g_{1}(y) = g_{2}(y)$ [f is invertible \Rightarrow f is one – one]
 $\Rightarrow g_{1} = g_{2}$ [g is one – one]
Hence, f has a unique inverse.
11. Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f⁻¹ and
show that (f⁻¹)⁻¹ = f.
Ans. Function f: {1, 2, 3} → {a, b, c} is given by,
f(1) = a, f(2) = b, and f(3) = c
If we define g: {a, b, c} → {1, 2, 3} as g(a) = 1, g(b) = 2, g(c) = 3, then we have:

(fog)(a) = f(g(a)) = f(1) = a(fog)(b) = f(g(b)) = f(2) = b(fog)(c) = f(g(c)) = f(3) = cAnd, (gof)(1) = g(f(1)) = g(a) = 1(gof)(2) = g(f(2)) = g(b) = 2(gof)(3) = g(f(3)) = g(c) = 3 \therefore gof = I_x and fog = I_y , where X = {1, 2, 3} and Y = {a, b, c}. Thus, the inverse of f exists and $f^{-1} = g$. ∴ f^{-1} : {a, b, c} → {1, 2, 3} is given by, $f^{-1}(a) = 1, f^{-1}(b) = 2, f^{-1}(c) = 3$ Let us now find the inverse of f^{-1} i.e., find the inverse of g. If we define h: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ as h(1) = a, h(2) = b, h(3) = c, then we have: (goh)(1) = g(h(1)) = g(a) = 1(goh)(2) = g(h(2)) = g(b) = 2(goh)(3) = g(h(3)) = g(c) = 3And (hog)(a) = h((a)) = h(1) = a(hog)(b) = h((b)) = h(2) = b(hog)(c) = h((c)) = h(3) = c \therefore goh I_x and hog I_y, where X = {1, 2, 3} and Y = {a, b, c}. Thus, the inverse of g exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$. It can be noted that h = f. Hence, $(f^{-1})^{-1} = f$. Let f: X \rightarrow Y be an invertible function. Show that the inverse of f⁻¹ is f, i.e., (f⁻¹)⁻¹ = f. 12. Let $f: X \rightarrow Y$ be an invertible function. Ans. Then, there exists a function g: $Y \rightarrow X$ such that gof = IXand fog = IY. Here, f-1 = g. Now, $gof = I_X and fog = I_Y$ \Rightarrow f⁻¹of = I_X and fof⁻¹= I_Y Hence, $f-1: Y \rightarrow X$ is invertible and f is the inverse of f^{-1} i.e., $(f^{-1})^{-1} = f$.

13. If f: R → R be given by
$$f(x) = (3 - x^3)^{\frac{1}{3}}$$
, then for $f(x)$ is
(A) $\frac{1}{x^3}$ (B) x^3 (C) x (D) $(3 - x^3)$
Ans. f: R → R is given as $f(x) = (3 - x^3)^{\frac{1}{3}}$
 \therefore for $f(x) = f(f(x)) = f\left((3 - x^3)^{\frac{1}{2}}\right) = \left[3 - \left((3 - x^3)^{\frac{1}{3}}\right)^{\frac{1}{3}}\right]^{\frac{1}{3}}$
 $= \left[3 - (3 - x^3)\right]^{\frac{1}{3}} = (x^3)^{\frac{1}{3}} = x$
 \therefore for $f(x) = x$
The correct answer is C.
14. Let f: R $-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map g:
Range f: R $-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map g:
Range f: R $-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map g:
(A) $g(y) = \frac{3y}{3-4y}$ (B) $g(y) = \frac{4y}{4-3y}$
(C) $g(y) = \frac{4y}{3-4y}$ (D) $g(y) = \frac{3y}{4-3y}$
Ans. It is given that f: R $-\left\{-\frac{4}{3}\right\} \rightarrow R$ is defined as $f(x) = \frac{4x}{3x+4}$.
Let y be an arbitrary element of Range f.
Then, there exists $x \in R - \left\{-\frac{4}{-3}\right\}$ such that. $y = f(x)$.
 $\Rightarrow y = \frac{4x}{3x+4}$
 $\Rightarrow 3xy + 4y = 4x$
 $\Rightarrow x(3-3y) = 4y$ let us define g: Range $f \rightarrow R - \left\{-\frac{4}{-3}\right\}$ as $g(y) = \frac{4y}{4-3y}$.

$$\Rightarrow x = \frac{4y}{4 - 3y}$$

$$(gof)(x) = g(f(x)) = g\left(\frac{4x}{3x + 4}\right)$$

Now,

$$=\frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)}=\frac{16x}{12x+16-12}=\frac{16x}{16}=x$$

$$=\frac{4\left(\frac{4y}{4+3y}\right)}{3\left(\frac{4y}{4-3y}\right)+4} = \frac{16x}{12y+16-12y} = \frac{16y}{16} = y$$

 $\therefore \text{gof} = I_{R-\left\{-\frac{4}{3}\right\}} \text{and} \text{fog} = I_{Rangef}$

Thus, g is the inverse of f i.e., $f^{-1} = g$.

Hence, the inverse of f is the map g: Range $f \rightarrow R - \left\{-\frac{4}{3}\right\}$, which is given by

$$g(y) = \frac{4y}{4-3y}$$

The correct answer is B.