SpeedLabs MATHS

CBSE 9 ${ }^{\text {th }}$

TEEVRA EDUTECH PVT. LTD.
Q. 1 In a cricket math, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Ans. \quad Number of times the batswoman hits a boundary $=6$
Total number of balls played $=30$
\therefore Number of times that the batswoman does not hit a boundary $=30-6=24$
P (she not hit a boundary) $=\frac{\text { Number of times when she does not hit boundary }}{\text { Total number of balls played }}$

$$
=\frac{24}{30}=\frac{4}{5}
$$

Q. 21500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl

Also check whether the sum of these probabilities is 1 .
Ans. \quad Total number of families $=475+814+211=1500$
(i) Number of families having 2 girls $=475$
$P_{1}($ a randomly chosen has 2 girls $)=\frac{\text { Number of families having } 2 \text { girls }}{\text { Total number of families }}$

$$
=\frac{475}{1500}=\frac{19}{60}
$$

(ii) Number of families having 1 girl $=814$
$\mathrm{P}_{2}($ a randomly chosen has 1 girls $)=\frac{\text { Number of families having } 1 \text { girls }}{\text { Total number of families }}$

$$
=\frac{814}{1500}=\frac{407}{750}
$$

(iii) Number of families having no girl $=211$
$P_{3}($ a randomly chosen has no girls $)=\frac{\text { Number of families having no girls }}{\text { Total number of families }}$
$=\frac{211}{1500}$

Sum of all these probabilities $=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}$

$$
\begin{gathered}
=\frac{475+407+211}{1500} \\
\frac{1500}{1500}=1
\end{gathered}
$$

Therefore, the sum of all these probabilities is 1 .
Q. 2 In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.
Ans. \quad Number of students born in the month of August $=6$
Total number of students $=40$
$P($ Student born in the month of august $)=\frac{\text { Number of student born in August }}{\text { Total number of student }}$

$$
=\frac{6}{40}=\frac{3}{20}
$$

Q. 4 Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	no heads
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.
Number of times 2 heads come up $=72$
Total number of times the coins were tossed $=200$

$$
\mathrm{P}(2 \text { heads will come up })=\frac{\text { Number of times } 2 \text { heads come up }}{\text { Total number of times the coins were tossed }}
$$

$$
=\frac{7}{200}=\frac{9}{25}
$$

Q. 5 An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly Income (in Rs)	Vehicles per family			
	0	1	2	Above 2
Less then 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen, find the probability that the family chosen is
(i) Earning Rs $10000-13000$ per month and owning exactly 2 vehicles.
(ii) Earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) Earning less than Rs 7000 per month and does not own any vehicle.
(iv) Earning Rs $13000-16000$ per month and owning more than 2 vehicles.
(v) Owning not more than 1 vehicle.

Ans. Number of total families surveyed $=10+160+25+0+0+305+27+2+1+535+29+1+2+469$ $+59+25+1+579+82+88=2400$
(i) Number of families earning Rs $10000-13000$ per month and owning exactly 2 vehicles $=P=\frac{29}{2400}$ Hence, required probability, $P=\frac{29}{2400}$
(ii) Number of families earning Rs 16000 or more per month and owning exactly 1 vehicle $=579$

Hence, required probability, $P=\frac{29}{2400}$
(iii) Number of families earning less than Rs 7000 per month and does not own any vehicle $=10$

Hence, required probability, $P=\frac{29}{2400}=\frac{1}{240}$
(iv) Number of families earning Rs $13000-16000$ per month and owning more than 2 vehicles $=25$

Hence, required probability, $P=\frac{29}{2400}=\frac{1}{96}$
(v) Number of families owning not more than 1 vehicle $=10+160+0+305+1+535+2+469+1+$ $579=2062$

Hence, required probability, $P=\frac{2062}{2400}=\frac{1031}{1200}$
Q. 6 A teacher wanted to analyses the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So, she decided to group them into intervals of varying sizes as follows: $0-20,20-30 \ldots$ $60-70,70-100$. Then she formed the following table:

Marks	Number of students
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$70-70$	15
$70-$ above	8
Total	90

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Ans. Total number of students $=90$
(i) Number of students getting less than 20% marks in the test $=7$

Hence, required probability, $P=\frac{7}{90}$
(ii) Number of students obtaining marks 60 or above $=15+8=23$

Hence, required probability, $P=\frac{23}{90}$
Q. 7 To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random
(i) likes statistics, (ii) does not like it

Ans. Total number of students $=135+65=200$
(i) Number of students liking statistics $=135$
$\mathrm{P}($ student liking statistics $)=\frac{135}{200}=\frac{27}{40}$
(ii) Number of students who do not like statistics $=65$
$\mathrm{P}($ student not liking statistics $)=\frac{65}{200}=\frac{13}{40}$
Q. 8 The distance (in km) of 40 engineers from their residence to their place of work were found as follows.

5	3	10	20	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

What is the empirical probability that an engineer lives?
(i) Less than 7 km from her place of work?
(ii) More than or equal to 7 km from her place of work?
(iii) Within $\frac{1}{2} \mathrm{~km}$ from her place of work?

Ans. (i) Total number of engineers $=40$
Number of engineers living less than 7 km from their place of work $=9$
Hence, required probability that an engineer lives less than 7 km from her place of work, $\mathrm{P}=\frac{9}{40}$
(ii) Number of engineers living more than or equal to 7 km from their place of work $=40-9=31$

Hence, required probability that an engineer lives more than or equal to 7 km from her place of work,
$P=\frac{31}{40}$
(iii) Number of engineers living within $\frac{1}{2} \mathrm{~km}$ from her place of work $=0$

Hence, required probability that an engineer lives within $\frac{1}{2} \mathrm{~km}$ from her place of work, $\mathrm{P}=0$
Q. 9 Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg): 4.975 .055 .085 .035 .005 .065 .084 .985 .045 .075 .00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Ans. \quad Number of total bags $=11$
Number of bags containing more than 5 kg of flour $=7$
Hence, required probability, $P=\frac{7}{11}$
Q. 10

Concentration of SO_{2} (in ppm)	Number of days (frequency)
$0.00-0.04$	4
$0.04-0.08$	9
$0.08-0.12$	9
$0.12-0.16$	2
$0.16-0.20$	4
$0.20-0.24$	2
Total	30

The above frequency distribution table represents the concentration of Sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of Sulphur dioxide in the interval $0.12-0.16$ on any of these days.
Ans. Number days for which the concentration of Sulphur dioxide was in the interval of $0.12-0.16=2$
Total number of days $=30$
Hence, required probability, $\mathrm{P}=\frac{2}{30}=\frac{1}{15}$
Q. 11

Blood group	Number of students
A	9
B	6
AB	3
0	12
Total	30

The above frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group $A B$.
Ans. Number of students having blood group $\mathrm{AB}=3$
Total number of students $=30$
Hence, required probability, $P=\frac{3}{30}=\frac{1}{10}$

