SpeedLabs MATHS

CBSE $12^{\text {th }}$ TEEVRA EDUTECH PVT. LTD.

Determinants Exercise-4.6

Assisted Practice | Expert Guidance | Personalized Insights
Q. 1 Examine the consistency of the system of equations.
$x+2 y=2$
$2 \mathrm{x}+3 \mathrm{y}=3$
Sol: The given system of equations is:
$x+2 y=2$
$2 \mathrm{x}+3 \mathrm{y}=3$
The given system of equations can be written in the form of $\mathrm{AX}=\mathrm{B}$, where
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
Now,
$|A|=1(3)-2(2)=3-4=-1 \neq 0$
$\therefore \mathrm{A}$ is non-singular.
Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.
Q. 2 Examine the consistency of the system of equations.
$2 \mathrm{x}-\mathrm{y}=5$
$x+y=4$
Sol: The given system of equations is:
$2 \mathrm{x}-\mathrm{y}=5$
$x+y=4$
The given system of equations can be written in the form of $\mathrm{AX}=\mathrm{B}$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 4\end{array}\right]$
Now,
$|A|=2(1)-(-1)(1)=2+1=3 \neq 0$
$\therefore \mathrm{A}$ is non-singular.
Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.
Q. 3 Examine the consistency of the system of equations.
$x+3 y=5$
$2 x+6 y=8$
Sol: The given system of equations is:
$x+3 y=5$
$2 \mathrm{x}+6 \mathrm{y}=8$
The given system of equations can be written in the form of $\mathrm{AX}=\mathrm{B}$, where
$A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 8\end{array}\right]$
Now,
$|A|=1(6)-3(2)=6-6=0$
$\therefore \mathrm{A}$ is a singular matrix.
Now,
$(\operatorname{adj} \mathrm{A})=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$
$(\operatorname{adj} \mathrm{A}) \mathrm{B}=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{c}30-24 \\ -10+8\end{array}\right]=\left[\begin{array}{c}6 \\ -2\end{array}\right] \neq 0$
Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.
Q. 4 Examine the consistency of the system of equations.
$x+y+z=1$
$2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=2$
$\mathrm{ax}+\mathrm{ay}+2 \mathrm{az}=4$
Sol: The given system of equations is:
$\mathrm{x}+\mathrm{y}+\mathrm{z}=1$
$2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=2$
$a x+a y+2 a z=4$
This system of equations can be written in the form $A X=B$, where
$A=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right|, X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Now,
$|A|=1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a)$
$=4 \mathrm{a}-2 \mathrm{a}-\mathrm{a}=4 \mathrm{a}-3 \mathrm{a}=\mathrm{a} \neq 0$
$\therefore \mathrm{A}$ is non-singular.
Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.
Q. 5 Examine the consistency of the system of equations.

$$
\begin{aligned}
& 3 x-y-2 z=2 \\
& 2 y-z=-1 \\
& 3 x-5 y=3
\end{aligned}
$$

Sol: The given system of equations is:

$$
\begin{aligned}
& 3 x-y-2 z=2 \\
& 2 y-z=-1 \\
& 3 x-5 y=3
\end{aligned}
$$

This system of equations can be written in the form of $A X=B$, where

$$
A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

Now,
$|A|=3(0-5)-0+3(1+4)=-15+15=0$
$\therefore \mathrm{A}$ is singular matrix.
Now,
$(\operatorname{adj} A)=\left[\begin{array}{ccc}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$
$(\operatorname{adj} A) B=\left[\begin{array}{ccc}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{c}-10-10+15 \\ -6-6+9 \\ -12-12+18\end{array}\right]=\left[\begin{array}{l}-5 \\ -3 \\ -6\end{array}\right] \neq 0$
Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.
Q. 6 Examine the consistency of the system of equations.
$5 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=5$
$2 \mathrm{x}+3 \mathrm{y}+5 \mathrm{z}=2$
$5 \mathrm{x}-2 \mathrm{y}+6 \mathrm{z}=-1$
Sol: The given system of equations is:
$5 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=5$
$2 \mathrm{x}+3 \mathrm{y}+5 \mathrm{z}=2$
$5 x-2 y+6 z=-1$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}5 & -1 & 4 \\ 2 & -3 & 5 \\ 5 & -2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}5 \\ 2 \\ -1\end{array}\right]$
Now,
$|\mathrm{A}|=5(18+10)+1(12-25)+4(-4-15)$
$=5(28)+1(-13)+4(-19)$
$=140-13-76$
$=51 \neq 0$
$\therefore \mathrm{A}$ is non-singular.
Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.
Q. 7 Solve system of linear equations, using matrix method.
$5 \mathrm{x}+2 \mathrm{y}=4$
$7 x+3 y=5$
Sol: The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$
Now,
$|\mathrm{A}|=15-14=1 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})$
$\therefore \quad \mathrm{A}^{-1}=\left[\begin{array}{cc}3 & -2 \\ -7 & 5\end{array}\right]$
$\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\left[\begin{array}{cc}3 & -2 \\ -7 & 5\end{array}\right]\left[\begin{array}{l}4 \\ 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}12-10 \\ -28+25\end{array}\right]=\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Hence, $\mathrm{x}=2$ nad $\mathrm{y}=-3$
Q. 8 Solve system of linear equations, using matrix method.
$2 \mathrm{x}-\mathrm{y}=-2$
$3 x+4 y=3$
Sol: The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
Now,
$|\mathrm{A}|=8+3=11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]$
$\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}-8+3 \\ 6+6\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}-5 \\ 12\end{array}\right]=\left[\begin{array}{c}-\frac{5}{11} \\ \frac{12}{11}\end{array}\right]$
Hence, $x=-\frac{5}{11}$ and $y=\frac{12}{11}$
Q. 9 Solve system of linear equations, using matrix method.
$4 \mathrm{x}-3 \mathrm{y}=3$
$3 x-5 y=7$
Sol: The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$
Now,
$|A|=-20+9=-11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})=\frac{1}{11}\left[\begin{array}{ll}-5 & 3 \\ -3 & 4\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]$
$\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}15-21 \\ 9-28\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}-6 \\ -19\end{array}\right]=\left[\begin{array}{c}-\frac{6}{11} \\ -\frac{19}{11}\end{array}\right]$
Hence, $x=\frac{-6}{11}$ and $y=\frac{-19}{11}$
Q. $10 \quad 5 \mathrm{x}+2 \mathrm{y}=3$
$3 x+2 y=5$
Sol: The given system of equations is:
$5 x+2 y=3$
$3 x+2 y=5$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
Now,
$|\mathrm{A}|=10-6=4 \neq 0$
Thus, A is non-singular. Therefore, A^{-1} exists.
Q. 11 By using properties of determinants, show that:

$$
\begin{aligned}
& 2 x+y+z=1 \\
& x-2 y-z=\frac{3}{2} \\
& 3 y-5 z=9
\end{aligned}
$$

Sol: The given system of equations is:

$$
\begin{aligned}
& 2 x+y+z=1 \\
& x-2 y-z=\frac{3}{2} \\
& 3 y-5 z=9
\end{aligned}
$$

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
Now,
$|A|=2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0$
$\therefore \mathrm{A}$ is non-singular. Therefore, A^{-1} exists.
Now, Now,
$\mathrm{A}_{11}=13, \mathrm{~A}_{12}=5, \mathrm{~A}_{13}=3$
$\mathrm{A}_{21}=8, \mathrm{~A}_{22}=-10, \mathrm{~A}_{23}=-6$
$\mathrm{A}_{31}=1, \mathrm{~A}_{32}=3, \mathrm{~A}_{33}=-5$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]\left[\begin{array}{l}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\frac{1}{34}\left[\begin{array}{c}13+12+9 \\ 5-15+27 \\ 3-9-45\end{array}\right]=\frac{1}{34}\left[\begin{array}{c}34 \\ 17 \\ -51\end{array}\right]=\left[\begin{array}{c}1 \\ \frac{1}{2} \\ -\frac{3}{2}\end{array}\right]$
Hence, $x=1, y=\frac{1}{2}$ and $z=-\frac{3}{2}$
Hence, the given system of equations is consistent.
Q. 12 By using properties of determinants, show that:
$x-y+z=4$
$2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=0$
$x+y+z=2$
Sol: The given system of equations is:
$x-y+z=4$
$2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=0$
$x+y+z=2$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
Now,
$|A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0$
$\therefore \mathrm{A}$ is non-singular. Therefore, A^{-1} exists.
Now,
$\mathrm{A}_{11}=4, \mathrm{~A}_{12}=-5, \mathrm{~A}_{13}=1$
$\mathrm{A}_{21}=2, \mathrm{~A}_{22}=0, \mathrm{~A}_{23}=-2$
$\mathrm{A}_{31}=2, \mathrm{~A}_{32}=5, \mathrm{~A}_{33}=3$
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
$\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}16+0+4 \\ -20+0+10 \\ 4+0+6\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}20 \\ -1 \\ 1\end{array}\right]$
Hence, $x=2, y=-1$ and $z=1$.
Q. 13 Solve system of linear equations, using matrix method.
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 \mathrm{x}-\mathrm{y}-2 \mathrm{z}=3$
Sol: The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}5 \\ -4 \\ 3\end{array}\right]$
Now,
$|A|=2(4+1)-3(-2-3)+3(-1+6)=2(5)-3(5)+3(5)=40 \neq 0$
$\therefore \mathrm{A}$ is non-singular. Therefore, A^{-1} exists.
Now,
$A_{11}=5, A_{12}=5, A_{13}=5$
$\mathrm{A}_{21}=3, \mathrm{~A}_{22}=-13, \mathrm{~A}_{23}=11$
$A_{31}=9, A_{32}=1, A_{33}=-7$
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]$
$\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]\left[\begin{array}{c}5 \\ -4 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{c}25-12+27 \\ 25+52+3 \\ 25-44-21\end{array}\right]=\frac{1}{40}\left[\begin{array}{c}40 \\ 80 \\ -40\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
Hence, $\mathrm{x}=1, \mathrm{y}=2$ and $\mathrm{z}=-1$.
Q. 14 Solve system of linear equations, using matrix method.
$x-y+2 z=7$
$3 x+4 y-5 z=-5$
$2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=12$
Sol: The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$
Now,
$|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$
$\therefore \mathrm{A}$ is non-singular. Therefore, A^{-1} exists.
Now,
$\mathrm{A}_{11}=7, \mathrm{~A}_{12}=-19, \mathrm{~A}_{13}=-11$
$\mathrm{A}_{21}=1, \mathrm{~A}_{22}=-1, \mathrm{~A}_{23}=-1$
$\mathrm{A}_{31}=-3, \mathrm{~A}_{32}=11, \mathrm{~A}_{33}=7$
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]$
$\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}49-5-36 \\ -133+5+132 \\ -77+5+84\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}8 \\ 4 \\ 12\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
Hence, $x=2, y=1$ and $z=3$.
Q. 15 If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, , find A^{-1}. Using A^{-1} solve the system of equations
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
$x+y-2 z=-3$
Sol: $\quad A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$,
$|\mathrm{A}|=2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1 \neq 0$
Now,
$\mathrm{A}_{11}=0, \mathrm{~A}_{12}=-2, \mathrm{~A}_{13}=1$
$\mathrm{A}_{21}=-1, \mathrm{~A}_{22}=-9, \mathrm{~A}_{23}=-5$
$\mathrm{A}_{31}=2, \mathrm{~A}_{32}=23, \mathrm{~A}_{33}=13$
$\therefore \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})=-\left[\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Now, the given system of equations can be written in the form of $\mathrm{AX}=\mathrm{B}$, where
$A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
The solution of the system of equation is given by $X=A^{-1} B$.
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
[Using (1)]
$=\left[\begin{array}{c}0-5+6 \\ -22-45+69 \\ -11-25+39\end{array}\right]$
$=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Hence, $x=1, y=2$ and $z=3$.
Q. 16 The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90 . The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70 . Find cost of each item per kg by matrix method.

Sol: Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively. Then, the given situation can be represented by a system of equations as:
$4 x+3 y+2 z=60$
$2 x+4 y+6 z=90$
$6 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=70$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}60 \\ 90 \\ 70\end{array}\right]$
$|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$
Now,
$\mathrm{A}_{11}=0, \mathrm{~A}_{12}=30, \mathrm{~A}_{13}=-20$
$\mathrm{A}_{21}=-5, \mathrm{~A}_{22}=0, \mathrm{~A}_{23}=10$
$\mathrm{A}_{31}=10, \mathrm{~A}_{32}=-20, \mathrm{~A}_{33}=10$
$\therefore \operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$
$\therefore \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})=\frac{1}{50}\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$
Now,
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
$\Rightarrow X=\frac{1}{50}\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]\left[\begin{array}{c}60 \\ 90 \\ 70\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\frac{1}{50}\left[\begin{array}{c}0-450+700 \\ 1800+0-1400 \\ -1200+900+700\end{array}\right]$
$=\frac{1}{50}\left[\begin{array}{l}250 \\ 400 \\ 400\end{array}\right]$
$=\left[\begin{array}{l}5 \\ 8 \\ 8\end{array}\right]$
$\therefore \mathrm{x}=5, \mathrm{y}=8$ and $\mathrm{z}=8$.
Hence, the cost of onions is Rs 5 per kg , the cost of wheat is Rs 8 per kg , and the cost of rice is Rs 8 per kg.

