CBSE $10^{\text {th }}$

TEEVRA EDUTECH PVT. LTD.

Coordinate Geometry Exercise-7.2

Q. 1 Find the coordinates of the point which divides the join of $(-1,7) \&(4,-3)$ in the ratio 2:3.

Sol: Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the required point. Using the section formula, we obtain

$$
\begin{aligned}
& x=\frac{2 \times 4+3 \times(-1)}{2+3}=\frac{8-3}{5}=\frac{5}{5}=1 \\
& y=\frac{2 \times(-3)+3 \times(7)}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3
\end{aligned}
$$

Therefore, the point is $(1,3)$.
Q. 2 Find the coordinates of the points of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.

Sol: Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are the points of trisection
of the line segment joining the given points
i.e., $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$

Therefore, point P divides AB internally in the ratio $1: 2$.
$\mathrm{x}_{1}=\frac{1 \times(-2)+2 \times 4}{1+2}=\frac{-2+8}{1+2}=\frac{6}{3}=2$
$y_{1}=\frac{1 \times(-3)+2 \times(-1)}{1+2}=\frac{-3-2}{3}=\frac{-5}{3}$
Therefore, $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(2,-\frac{5}{3}\right)$

Point Q divides AB internally in the ratio 2:1.
$\mathrm{x}_{2}=\frac{2 \times(-2)+1 \times 4}{2+1}=\frac{-4+4}{3}=\frac{6}{3}=2$
$y_{2}=\frac{2 \times(-3)+1 \times(-1)}{2+1}=\frac{-6-1}{3}=\frac{-7}{3}$
Therefore, $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(0,-\frac{7}{3}\right)$
Q. 3 To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along AD , as shown in the following figure. Niharika $\frac{1}{4}$ th runs the distance $A D$ on the 2 nd line and posts a green flag. Preet $\frac{1}{5}$ th runs the distance $A D$ on the $8^{\text {th }}$ line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Sol:

It can be observed that Niharika posted the green flag at of the distance AD i.e., $\left(\frac{1}{4} \times 100\right) \mathrm{m}=25 \mathrm{~m}$ from the starting point of 2 nd line. Therefore, the coordinates of this point G is $(2,25)$.

Similarly, Preet posted red flag at of the distance AD i.e., $\left(\frac{1}{5} \times 100\right) \mathrm{m}=20 \mathrm{~m}$ from the starting point of 8th line. Therefore, the coordinates of this point R are $(8,20)$.

Distance between these flags by using distance formula $=\mathrm{GR}$

$$
=\sqrt{(8-2)^{2}+(25-20)^{2}}=\sqrt{36+25}=\sqrt{61} \mathrm{~m}
$$

The point at which Rashmi should post her blue flag is the mid-point of the line joining these points.

Let this point be $\mathrm{A}(\mathrm{x}, \mathrm{y})$.
$\mathrm{x}=\frac{2+8}{2}=\frac{10}{2}=5$
$y=\frac{25+20}{2}=\frac{45}{5}=9$
Hence, $\mathrm{A}(\mathrm{x}, \mathrm{y})=(5,22.5)$

Therefore, Rashmi should post her blue flag at 22.5 m on $5^{\text {th }}$ line.
Q. 4 Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$
is divided by $(-1,6)$.
Sol: Let the ratio in which the line segment joining $(-3,10)$ and $(6,-8)$ is divided by point $(-1,6)$ be k: 1 .

Therefore, $-1=\frac{6 \mathrm{k}-3}{\mathrm{k}+1}$
$-\mathrm{k}-1=6 \mathrm{k}-3$
$7 \mathrm{k}=2$
$\mathrm{k}=\frac{2}{7}$
Therefore, the required ratio is $2: 7$
Q. 5 Find the ratio in which the line segment joining $A(1,-5)$ and $B(-4,5)$ is divided by the x-axis. Also find the coordinates of the point of division.

Sol: Let the ratio in which the line segment joining $A(1,-5)$ and $B(-4,5)$ is divided by x-axis be k: 1 .

Therefore, the coordinates of the point of division is $\left(\frac{-4 \mathrm{k}+1}{\mathrm{k}+1}, \frac{5 \mathrm{k}-5}{\mathrm{k}+1}\right)$.

We know that y -coordinate of any point on x -axis is 0 .
$\therefore \frac{5 \mathrm{k}-5}{\mathrm{k}+1}=0, \mathrm{k}=1$

Therefore, x-axis divides it in ratio $1: 1$.

Division point $=\left(\frac{-4(1)+1}{1+1}, \frac{5(1)-5}{1+1}\right)\left(\frac{-4+1}{2}, \frac{5-5}{2}\right)=\left(\frac{-3}{2}, 0\right)$
Q. 6 If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.

Sol: Let $(1,2),(4, y),(x, 6)$, and $(3,5)$ are the coordinates of A, B, C, D vertices of a these diagonals.

B $4: 9$

Therefore, 0 is the mid-point of AC and BD .

If 0 is the mid-point of $A C$, then the coordinates of 0 are
$\left(\frac{1+\mathrm{x}}{2}, \frac{2+6}{2}\right) \Rightarrow\left(\frac{\mathrm{x}+1}{2}, 4\right)$
If O is the mid-point of $B D$, then the coordinates of O are
$\left(\frac{4+3}{2}, \frac{5+\mathrm{y}}{2}\right) \Rightarrow\left(\frac{7}{2}, \frac{5+\mathrm{y}}{2}\right)$
Since both the coordinates are of the same point 0 ,

$$
\begin{aligned}
& \therefore \frac{\mathrm{x}+1}{2}=\frac{7}{2} \text { and } 4=\frac{5+\mathrm{y}}{2} \\
& \Rightarrow \mathrm{x}+1=7 \text { and } 5+\mathrm{y}=8 \\
& \Rightarrow \mathrm{x}=6 \text { and } \mathrm{y}=3
\end{aligned}
$$

Q. 7 Find the coordinates of a point A, where $A B$ is the diameter of circle whose centre is $(2,-3)$ and B is $(1,4)$

Sol: Let the coordinates of point A be (x, y).
Mid-point of AB is $(2,-3)$, which is the center of the circle.
$\therefore(2,-3)=\left(\frac{\mathrm{x}+1}{2}, \frac{\mathrm{y}+4}{2}\right)$
$\Rightarrow \frac{\mathrm{x}+1}{2}=2$ and $\frac{\mathrm{y}+4}{2}=-6$
$\Rightarrow \mathrm{x}+1=4$ and $\mathrm{y}+4=-6$
$\Rightarrow \mathrm{x}=3$ and $\mathrm{y}=-10$
Q. 8 If A and B are $(-2,-2)$ and $(2,-4)$, respectively, find the coordinates of P such that $\mathrm{AP}=\frac{7}{3} \mathrm{AB}$ and P lies on the line segment $A B$.

Sol: The coordinates of point A and B are $(-2,-2)$ and $(2,-4)$ respectively.

Since AP $=\frac{7}{3} A B$,

Therefore, AP : $\mathrm{PB}=3: 4$
Point P divides the line segment AB in the ratio 3:4.
Coordinates of $\mathrm{P}=\left(\frac{3 \times 2+4 \times(-2)}{3+4}, \frac{3 \times(-4)+4 \times(-2)}{3+4}\right)$
$=\left(\frac{6-8}{7}, \frac{-12-8}{7}\right)=\left(\frac{-2}{7}, \frac{-20}{7}\right)$
Q. 9 Find the coordinates of the points which divide the line segment joining A $(-2,2)$ and $B(2,8)$ into four equal parts.

Sol: From the figure, it can be observed that points P, Q, R are dividing the line segment in a ratio 1:3, 1:1, $3: 1$ respectively.

Coordinates of $\mathrm{P}=\left(\frac{1 \times 2+3 \times(-2)}{1+3}, \frac{1 \times 8+3 \times 2}{1+3}\right)=\left(-1, \frac{7}{2}\right)$
Coordinates of $\mathrm{Q}=\left(\frac{2+(-2)}{2}, \frac{2+8}{2}\right)=(0,5)$
Coordinates of $\mathrm{R}=\left(\frac{3 \times 2+1 \times(-2)}{3+1}, \frac{3 \times 8+1 \times 2}{3+1}\right)=\left(1, \frac{13}{2}\right)$
Q. 10 Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order.
[Hint: Area of a rhombus $=\frac{1}{2}$ (product of its diagonals)]

Sol: Let $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ are the vertices A, B, C, D of a rhombus ABCD.

Length of diagonal $\mathrm{AC}=\sqrt{(3-(-1))^{2}+(0-4)^{2}}$

$$
=\sqrt{16+16}=4 \sqrt{2}
$$

Length of diagonal $\mathrm{BD}=\sqrt{(4-(-2))^{2}+(5-(-1))^{2}}$

$$
=\sqrt{36+36}=6 \sqrt{2}
$$

Therefore, area of Rhombus ABCD $=\frac{1}{2} \times 4 \sqrt{2} \times 6 \sqrt{2}$

$$
=24 \text { Squre units }
$$

