

CBSE 12th TEEVRA EDUTECH PVT. LTD.

Continuity and Differentiability Exercise-5.3

"An Innovative Practice Methodology by IlTians."

Q.1 Find
$$\frac{dy}{dx}$$
: $2x + 3y = \sin x$

Sol: The given relationship is
$$2x + 3y = \sin x$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(2x+3y) = \frac{d}{dx}(\sin x)$$

$$\Rightarrow \frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \cos x$$

$$\Rightarrow 2 + 3 \frac{dy}{dx} = \cos x$$

$$\Rightarrow 3 \frac{dy}{dx} = \cos x - 2$$

$$\therefore \frac{dy}{dx} = \frac{\cos x - 2}{3}$$

Q.2 Find
$$\frac{dy}{dx}$$
: $2x + 3y = \sin y$

Sol: The given relationship is
$$2x + 3y = \sin y$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(2x + 3y) = \frac{d}{dx}(\sin y)$$

$$\Rightarrow \frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \cos y \frac{dy}{dx}[By using chain rule]$$

$$\Rightarrow 2 = (\cos y - 3) \frac{dy}{dx}$$

$$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{2}{\cos y - 3}$$

Q.3 Find
$$\frac{dy}{dx}$$
: $ax + by^2 = \cos y$

Sol: The given relationship is
$$ax + by^2 = \cos y$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(ax) + \frac{d}{dx}(by^2) = \frac{d}{dx}(\cos y)$$

By using chain rule, we obtain
$$\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$$
 and $\frac{d}{dx}(\cos y) = -\sin y \frac{dy}{dx}$

From (1) and (2), we obtain

$$a + b \times 2y \frac{dy}{dx} = -\sin y \frac{dy}{dx}$$

$$\Rightarrow$$
 $(2by + \sin y) \frac{dy}{dx} = -a$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-a}{2\mathrm{b}y + \sin y}$$

Q.4 Find
$$\frac{dy}{dx}$$
: $xy + y^2 = \tan x + y$

Sol: The given relationship is
$$xy + y^2 = \tan x + y$$

$$\frac{d}{dx}(xy+y^2) = \frac{d}{dx}(\tan x + y)$$

$$\Rightarrow \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}(\tan x) + \frac{dy}{dx}$$

$$\Rightarrow \left[y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx} \right] + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$

[Using product rule and chain rule]

$$\Rightarrow$$
 y. 1 + x. $\frac{dy}{dx}$ + 2y $\frac{dy}{dx}$ = sec² x + $\frac{dy}{dx}$

$$\Rightarrow (x + 2y - 1)\frac{dy}{dx} = \sec^2 x - y$$

$$\therefore \frac{dy}{dx} = \frac{\sec^2 x - y}{(x + 2y - 1)}$$

Q.5 Find
$$\frac{dy}{dx}$$
: $x^2 + xy + y^2 = 100$

Sol: The given relationship is
$$x^2 + xy + y^2 = 100$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x^2 + xy + y^2) = \frac{d}{dx}(100)$$

$$\Rightarrow \frac{d}{dx}(x^2) + \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = 0$$
 [Derivative of constant function is 0]

$$\Rightarrow 2x + \left[y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx}\right] + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$
 [Using product rule and chain rule]

$$\Rightarrow 2x + y \cdot 1 + x \cdot \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow$$
 2x + y + (x + 2y) $\frac{dy}{dx}$ = 0

$$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{2x+y}{x+2y}$$

Q.6 Find
$$\frac{dy}{dx}$$
: $x^3 + x^2y + xy^2 + y^3 = 81$

Sol: The given relationship is
$$x^3 + x^2y + xy^2 + y^3 = 81$$

$$\frac{d}{dx}(x^3 + x^2y + xy^2 + y^3) = \frac{d}{dx}(81)$$

$$\Rightarrow \frac{d}{dx}(x^3) + \frac{d}{dx}(x^2y) + \frac{d}{dx}(xy^2) + \frac{d}{dx}(y^3) = 0$$
 [Derivative of constant function is 0]

$$\Rightarrow 3x^{2} + \left[y \cdot \frac{d}{dx}(x^{2}) + x^{2} \frac{dy}{dx} \right] + \left[y^{2} \cdot \frac{d}{dx}(x) + x \frac{d}{dx}(y^{2}) \right] + 3y^{2} \frac{dy}{dx} = 0$$

$$\Rightarrow 3x^{2} + \left[y \cdot 2x + x^{2} \frac{dy}{dx}\right] + \left[y^{2} \cdot 1 + x \cdot 2y \cdot \frac{dy}{dx}\right] + 3y^{2} \frac{dy}{dx} = 0$$

$$\Rightarrow (x^2 + 2xy + 3y^2) \frac{dy}{dx} + (3x^2 + 2xy + y^2) = 0$$

$$\therefore \frac{dy}{dx} = -\frac{(3x^2 + 2xy + y^2)}{(x^2 + 2xy + 3y^2)}$$

Q.7 Find
$$\frac{dy}{dx}$$
: $\sin^2 y + \cos xy = \pi$

Sol: The given relationship is
$$\sin^2 y + \cos xy = \pi$$

$$\frac{d}{dx}(\sin^2 y + \cos xy) = \frac{d}{dx}(\pi)$$

$$\Rightarrow \frac{d}{dx}(\sin^2 y) + \frac{d}{dx}(\cos xy) = 0 \qquad(1)$$

By using chain rule, we obtain

$$\frac{d}{dx}(\sin^2 y) = 2\sin y \frac{d}{dx}(\sin y) = 2\sin y \cos y \frac{dy}{dx} \qquad(2)$$

$$\Rightarrow \frac{d}{dx}(\cos xy) = -\sin xy \frac{d}{dx}(xy) = -\sin xy \left[y \frac{d}{dx}(x) + x \frac{dy}{dx} \right]$$

$$= -\sin xy \left[y \cdot 1 + x \frac{dy}{dx} \right] = -y \cdot \sin xy - x \sin xy \frac{dy}{dx} \qquad(3)$$

From (1), (2), and (3), we obtain

$$\Rightarrow 2 \sin y \cos y \frac{dy}{dx} - y \sin xy - x \sin xy \frac{dy}{dx} = 0$$

$$\Rightarrow$$
 (sin 2y - xsin xy) $\frac{dy}{dx}$ = ysin xy

$$\therefore \frac{dy}{dx} = -\frac{y\sin xy}{(\sin 2y - x\sin xy)}$$

Q.8 Find
$$\frac{dy}{dx}$$
: $\sin^2 x + \cos^2 y = 1$

Sol: The given relationship is
$$\sin^2 x + \cos^2 y = 1$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin^2 x + \cos^2 y) = \frac{d}{dx}(1)$$

$$\Rightarrow \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}(\cos^2 y) = 0$$

$$\Rightarrow 2\sin x \cdot \frac{d}{dx}(\sin x) + 2\cos y \cdot \frac{d}{dx}(\cos y) = 0$$

$$\Rightarrow 2\sin x \cdot \cos x + 2\cos y \cdot (-\sin y) \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \sin 2x - \sin 2y \cdot \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{\sin 2x}{\sin 2y}$$

Q.9 Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

Sol: The given relationship is
$$y = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$$

$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow \sin y = \frac{2x}{1+x^2}$$

$$\frac{d}{dx}(\sin y) = \frac{d}{dx} \left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow \frac{d}{dx}(\sin y) = \frac{d}{dx} \left(\frac{2x}{1+x^2}\right)$$

.....(1)

.....(2)

The function, $\frac{2x}{1+x^2}$, is of the form of $\frac{u}{v}$.

Therefore, by quotient rule, we obtain

$$\frac{d}{dx} \left(\frac{2x}{1+x^2} \right) = \frac{\left(1+x^2 \right) \frac{d}{dx} (2x) - 2x \cdot \frac{d}{dx} (1+x^2)}{(1+x^2)}$$

$$\Rightarrow \frac{(1+x^2) \cdot 2 - 2x \cdot [0+2x]}{(1+x^2)^2} = \frac{2+2x^2-4x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$$

Also, $\sin y = \frac{2x}{1+x^2}$

$$\Rightarrow 2\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} = \sqrt{\frac{(1 + x^2)^2 - 4x^2}{(1 + x^2)^2}}$$

$$=\sqrt{\frac{(1-x^2)^2}{(1+x^2)^2}} = \frac{1-x^2}{1+x^2} \qquad \dots (3)$$

From (1), (2), and (3), we obtain

$$\frac{1-x^2}{1+x^2} \times \frac{dy}{dx} = \frac{2(1-x^2)^2}{(1+x^2)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x}{1+x^2}$$

Q.10 Find
$$\frac{dy}{dx}$$
: $y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$

Sol: The given relationship is $y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$

$$y = tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$

$$\Rightarrow \tan y = \left(\frac{3x - x^3}{1 - 3x^2}\right) \qquad(1)$$

It is known that,
$$\tan y = \frac{3 \tan \frac{y}{3} - \tan^{3} \frac{y}{3}}{1 - 3 \tan^{2} \frac{y}{3}}$$
(2)

Comparing equations (1) and (2), we obtain

$$x = \tan \frac{y}{3}$$

$$\frac{d}{dx}(x) = \frac{d}{dx}(\tan \frac{y}{3})$$

$$\Rightarrow 1 = \sec^2 \frac{y}{3} \cdot \frac{d}{dx} \left(\frac{y}{3} \right)$$

$$\Rightarrow 1 = \sec^2 \frac{y}{3} \cdot \frac{1}{3} \frac{dy}{dx}$$

$$\Rightarrow 1 = \frac{3}{\sec^2 \frac{y}{3}} = \frac{3}{1 + \tan^2 \frac{y}{3}}$$

$$\therefore \frac{dy}{dx} = \frac{3}{1+x^2}$$

Q.11 Find
$$\frac{dy}{dx}$$
: $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $0 < x < 1$

Sol: The given relationship is
$$y = \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$

$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow \cos y = \left(\frac{1 - x^2}{1 + x^2}\right)$$

$$\Rightarrow \frac{1-\tan^2\frac{y}{2}}{1+\tan^2\frac{y}{2}} = \frac{1-x^2}{1+x^2}$$

On comparing L.H.S. and R.H.S. of the above relationship, we obtain

$$x = \tan \frac{y}{2}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx} \left(\tan \frac{y}{2} \right)$$

$$\Rightarrow \sec^2 \frac{y}{2} \cdot \frac{d}{dx} \left(\frac{y}{2} \right) = \frac{d}{dx} (x)$$

$$\Rightarrow$$
 sec² $\frac{y}{2} \times \frac{1}{2} \frac{dy}{dx} = 1$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{2}{\sec^2 \frac{y}{2}} = \frac{2}{1 + \tan^2 \frac{y}{2}}$$

$$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{1+x^2}$$

Q.12 Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $0 < x < 1$

Sol: The given relationship is
$$y = \sin^{-1} \left(\frac{1-x^2}{1+x^2} \right)$$

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow \sin y = \left(\frac{1 - x^2}{1 + x^2}\right)$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}(\frac{1-x^2}{1+x^2})$$
(1)

By using chain rule, we obtain

$$\frac{d}{dx}(\sin y) = \cos y \cdot \frac{dy}{dx}$$

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}$$

$$= \sqrt{\frac{(1+x^2)^2 - (1-x^2)^2}{(1+x^2)^2}} = \sqrt{\frac{4x^2}{(1+x^2)^2}} = \frac{2x}{1+x^2}$$

$$\therefore \frac{d}{dx}(\sin y) = \frac{2x}{1+x^2} \frac{dy}{dx} \qquad \dots \dots (2)$$

$$\frac{d}{dx} \left(\frac{1-x^2}{1+x^2} \right) = \frac{(1+x^2) \cdot (1-x^2) - (1-x^2) \cdot (1+x^2)}{(1+x^2)^2} \quad [Using quotient rule]$$

$$= \frac{(1+x^2)\cdot(1-x^2)-(1-x^2)\cdot(1+x^2)}{(1+x^2)^2}$$

$$= \frac{-2x-2x^3-2x+2x^3}{(1+x^2)^2}$$

$$= \frac{-4x}{(1+x^2)^2} \qquad \dots (3)$$

From (1), (2), and (3), we obtain

$$\frac{2x}{1+x^2} \frac{dy}{dx} = \frac{-4x}{(1+x^2)^2}$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{2x}{1+x^2}$$

Alternate method

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow \sin y = \frac{1-x^2}{1+x^2}$$

$$\Rightarrow$$
 $(1 + x^2) \sin y = 1 - x^2$

$$\Rightarrow$$
 (1 + siny)x² = 1 - sin y

$$\Rightarrow x^2 = \frac{1-\sin y}{1+\sin y}$$

$$\Rightarrow x^2 = \frac{\left(\cos\frac{y}{2} - \sin\frac{y}{2}\right)^2}{\left(\cos\frac{y}{2} + \sin\frac{y}{2}\right)^2}$$

$$\Rightarrow X = \frac{\left(\cos\frac{y}{2} - \sin\frac{y}{2}\right)}{\left(\cos\frac{y}{2} + \sin\frac{y}{2}\right)}$$

$$\Rightarrow X = \frac{1 - \tan \frac{y}{2}}{1 + \tan \frac{y}{2}}$$

$$\Rightarrow$$
 x = tan $\left(\frac{\pi}{4} - \frac{y}{2}\right)$

$$\Rightarrow \frac{d}{dx}(x) = \frac{d}{dx}\left[\tan\left(\frac{\pi}{4} - \frac{y}{2}\right)\right]$$

$$\Rightarrow 1 = \sec^2\left(\frac{\pi}{4} - \frac{y}{2}\right) \cdot \frac{d}{dx}\left(\frac{\pi}{4} - \frac{y}{2}\right)$$

$$\Rightarrow 1 \left[1 + \tan^2 \left(\frac{\pi}{4} - \frac{y}{2} \right) \right] \cdot \left(-\frac{1}{2} \frac{dy}{dx} \right)$$

$$\Rightarrow 1 = (1 + x^2) \cdot \left(-\frac{1}{2} \frac{dy}{dx} \right)$$

$$\Rightarrow \frac{dy}{dx} = -\frac{2}{1+x^2}$$

Q.13 Find
$$\frac{dy}{dx}$$
: $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$, $-1 < x < 1$

Sol: The given relationship is
$$y = \cos^{-1} \left(\frac{2x}{1+x^2} \right)$$

$$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow$$
 cos y = $\frac{2x}{1+x^2}$

$$\frac{d}{dx}(\cos y) = \frac{d}{dx} \cdot \left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow -\sin y \cdot \frac{dy}{dx} = \frac{(1+x^2) \cdot \frac{d}{dx} (2x) - 2x \cdot \frac{d}{dx} (1+x^2)}{(1+x^2)^2}$$

$$\Rightarrow \sqrt{1 - \cos^2 y} \frac{dy}{dx} = \frac{(1 + x^2) \times 2 - 2x \cdot 2x}{(1 + x^2)^2}$$

$$\Rightarrow \left[\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2}\right] \frac{\mathrm{d}y}{\mathrm{d}x} = -\left[\frac{2(1 - x^2)}{(1 + x^2)^2}\right]$$

$$\Rightarrow \sqrt{\frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2}} \frac{dy}{dx} = \frac{-2(1-x^2)}{(1+x^2)^2}$$

$$\Rightarrow \sqrt{\frac{(1-x^2)^2}{(1+x^2)^2}} \frac{dy}{dx} = \frac{-2(1-x^2)}{(1+x^2)^2}$$

$$\Rightarrow \frac{1-x^2}{1+x^2} \frac{dy}{dx} = \frac{-2(1-x^2)}{(1+x^2)^2}$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-2}{1+x^2}$$

Q.14 Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}(2x\sqrt{1-x^2})$, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

Sol: The given relationship is $y = \sin^{-1}(2x\sqrt{1-x^2})$

$$y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$

$$\Rightarrow$$
 sin y = $2x\sqrt{1-x^2}$

Differentiating this relationship with respect to x, we obtain

$$(\cos y)\frac{dy}{dx} = 2\left[x\frac{d}{dx}\left(\sqrt{1-x^2}\right) + \sqrt{1-x^2}\frac{dx}{dx}\right]$$

$$\Rightarrow \sqrt{1 - \sin^2 y} \frac{dy}{dx} = 2 \left[\frac{x}{2} - \frac{2x}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} \right]$$

$$\Rightarrow \left[\sqrt{1 - (2x\sqrt{(1 - x^2)^2})^2} \right]_{dx}^{dy} = 2 \left[\frac{-x^2 + 1 - x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \sqrt{1 - 4x^2(1 - x^2)} \frac{dy}{dx} = 2 \left[\frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \sqrt{(1-2x^2)^2} \frac{dy}{dx} = 2 \left[\frac{1-2x^2}{\sqrt{1-x^2}} \right]$$

$$\Rightarrow (1 - 2x^2) \frac{dy}{dx} = 2 \left[\frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{2}{1+x^2}$$

Q.15 Find
$$\frac{dy}{dx}$$
: $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$, $0 < x < \frac{1}{\sqrt{2}}$

Sol: The given relationship is $y = \sec^{-1} \left(\frac{1}{2x^2 - 1} \right)$

$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$$

$$\Rightarrow \sec y = \frac{1}{2x^2-1}$$

$$\Rightarrow \cos y = 2x^2 - 1$$

$$\Rightarrow 2x^2 = \cos y + 1$$

$$\Rightarrow 2x^2 = 2\cos^2\frac{y}{2}$$

$$\Rightarrow x = \cos \frac{y}{2}$$

$$\frac{d}{dx}(x) = \frac{d}{dx} \left(\cos \frac{y}{2} \right)$$

$$\Rightarrow 1 = -\sin\frac{y}{2} \cdot \frac{d}{dx} \left(\frac{y}{2}\right)$$

$$\Rightarrow \frac{-1}{\sin\frac{y}{2}} = \frac{1}{2} \frac{dy}{dx}$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{\sin\frac{y}{2}} = \frac{-2}{\sqrt{1 - \cos^2\frac{y}{2}}}.$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{\sqrt{1-x^2}}$$