CBSE $10^{\text {th }}$

TEEVRA EDUTECH PVT. LTD.

Circle

Q. 1 From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm

Sol:

Let O be the centre of the circle.

Given that,
$O Q=25 \mathrm{~cm}$ and $P Q=24 \mathrm{~cm}$

As the radius is perpendicular to the tangent at the point of contact,

Therefore, $\mathrm{OP} \perp \mathrm{PQ}$

Applying Pythagoras theorem in $\triangle O P Q$, we obtain
$\mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$\mathrm{OP}^{2}+24^{2}=25^{2}$
$\mathrm{OP}^{2}=625-576$
$\mathrm{OP}^{2}=49$
$\mathrm{OP}=7$

Therefore, the radius of the circle is 7 cm .

Hence, alternative (A) is correct
Q. 2 In the given figure, if TP and TQ are the two tangents to a circle with centre 0 so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
(A) 60°
(B) 70°
(C) 80°
(D) 90°

Sol:

It is given that TP and TQ are tangents.
Therefore, radius drawn to these tangents will be perpendicular to the tangents.
Thus, $\mathrm{OP} \perp \mathrm{TP}$ and $\mathrm{OQ} \perp \mathrm{TQ}$
$\angle O P T=90^{\circ}$
$\angle O Q T=90^{\circ}$

In quadrilateral POQT,

Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow 90+110^{\circ}+90+\mathrm{PTQ}=360^{\circ}$
$\Rightarrow \mathrm{PTQ}=70^{\circ}$
Hence, alternative (B) is correct
Q. 3 If tangents $P A$ and $P B$ from a point P to a circle with centre 0 are inclined to each other an angle of 80°, then $\angle \mathrm{POA}$ is equal to
(A) 50°
(B) 60°
(C) 70°
(D) 80°

Sol:

It is given that PA and PB are tangents.
Therefore, the radius drawn to these tangents will be perpendicular to the tange ${ }^{p}$

Thus, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
$\angle O B P=90^{\circ}$

$\angle O A P=90^{\circ}$

In AOBP,

Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90+80+90^{\circ}+\mathrm{BOA}=360^{\circ}$
$\angle B O A=100^{\circ}$

In $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$,
$\mathrm{AP}=\mathrm{BP}$ (Tangents from a point)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{OP}($ Common side $)$

Therefore, $\triangle \mathrm{OPB} \cong \triangle \mathrm{OPA}$ (SSS congruence criterion)
$\mathrm{A} \leftrightarrow \mathrm{B}, \mathrm{P} \leftrightarrow \mathrm{P}, \mathrm{O} \leftrightarrow \mathrm{O}$

And thus, $\angle \mathrm{POB}=\angle \mathrm{POA}$
$\angle \mathrm{POA}=\frac{1}{2} \angle \mathrm{AOB}=\frac{100^{\circ}}{2}=50^{\circ}$

Hence, alternative (A) is correct.
Q. 4 Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Sol: Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.
Thus, $\mathrm{OA} \perp \mathrm{RS}$ and $\mathrm{OB} \perp \mathrm{PQ}$
$\angle O A R=90^{\circ}$
$\angle \mathrm{OAS}=90^{\circ}$
$\angle O B P=90^{\circ}$
$\angle \mathrm{OBQ}=90^{\circ}$
It can be observed that
$\angle \mathrm{OAR}=\angle \mathrm{OBQ}$ (Alternate interior angles)
$\angle \mathrm{OAS}=\angle \mathrm{OBP}$ (Alternate interior angles)
Since alternate interior angles are equal, lines PQ and RS will be parallel.
Q. 5 Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Sol: Let us consider a circle with centre 0 . Let AB be a tangent which touches the circle at P

We have to prove that the line perpendicular to AB at P passes through centre 0 .
We shall prove this by contradiction method.

Let us assume that the perpendicular to AB at P does not pass through centre 0 .
Let it pass through another point O^{\prime}. Join OP and $\mathrm{O}^{\prime} \mathrm{P}$.
As perpendicular to AB at P passes through O^{\prime}, therefore,
$\angle 0^{\prime} \mathrm{PB}=90^{\circ}$

O is the centre of the circle and P is the point of contact. We know the line joining
the centre and the point of contact to the tangent of the circle are perpendicular to each other.
$\therefore \angle \mathrm{OPB}=90^{\circ}$

Comparing equations (1) and (2), we obtain
$\angle O^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$

From the figure, it can be observed that,
$\angle O^{\prime} \mathrm{PB}<\angle \mathrm{OPB}$

Therefore, $\angle O^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$ is not possible. It is only possible, when the line $\mathrm{O}^{\prime} \mathrm{P}$ coincides with OP .

Therefore, the perpendicular to AB through P passes through centre 0 .
Q. 6 The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm .

Find the radius of the circle.

Sol: Let us consider a circle centered at point 0 .
$A B$ is a tangent drawn on this circle from point A.

Given that,
$\mathrm{OA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$

In $\triangle \mathrm{ABO}$,
$\mathrm{OB} \perp \mathrm{AB}$ (Radius \perp tangent at the point of contact)

Applying Pythagoras theorem in $\triangle \mathrm{ABO}$, we obtain
$\mathrm{AB}^{2}+\mathrm{BO}^{2}=\mathrm{OA}^{2}$
$4^{2}+\mathrm{BO}^{2}=5^{2}$
$16+\mathrm{BO}^{2}=25$
$\mathrm{BO}^{2}=9$
$B O=3$

Hence, the radius of the circle is 3 cm .
Q. 7 Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Sol: Let the two concentric circles be centered at point 0 . And let PQ be the chord of the larger circle which touches the smaller circle at point A. Therefore, $P Q$ is tangen $\%$ the smaller circle.
$\mathrm{OA} \perp \mathrm{PQ}($ As OA is the radius of the circle)

Applying Pythagoras theorem in $\triangle \mathrm{OAP}$, we obtain
$\mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OP}^{2}$
$3^{2}+\mathrm{AP}^{2}=5^{2}$
$9+\mathrm{AP}^{2}=25$
$\mathrm{AP}^{2}=16 \Rightarrow \mathrm{AP}=4$

In $\triangle \mathrm{OPQ}$, Since $\mathrm{OA} \perp \mathrm{PQ}$,
$\mathrm{AP}=\mathrm{AQ}$ (Perpendicular from the center of the circle bisects the chord)
$P Q=2 A P=2 \times 4=8$

Therefore, the length of the chord of the larger circle is 8 cm .
Q. 8 A quadrilateral ABCD is drawn to circumscribe a circle (see given figure) Prove that

$$
A B+C D=A D+B C
$$

Sol: It can be observed that
$\mathrm{DR}=\mathrm{DS}$ (Tangents on the circle from point D$) \ldots$... (1)
$\mathrm{CR}=\mathrm{CQ}$ (Tangents on the circle from point C) ... (2)
$B P=B Q$ (Tangents on the circle from point B) ..
$\mathrm{AP}=\mathrm{AS}$ (Tangents on the circle from point A) ..

Adding all these equations, we obtain
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$(D R+C R)+(B P+A P)=(D S+A S)+(C Q+B Q)$
$C D+A B=A D+B C$
Q.9: In the given figure, XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Sol: In $\triangle \mathrm{OPA}$ and $\triangle \mathrm{OCA}$,
$\mathrm{OP}=\mathrm{OC}$ (Radii of the same circle)
$\mathrm{AP}=\mathrm{AC}($ Tangents from point A$)$
$\mathrm{AO}=\mathrm{AO}($ Common side $)$

$\Delta \mathrm{OPA} \cong \Delta \mathrm{OCA}(\mathrm{SSS}$ congruence criterion)

Therefore, $\mathrm{P} \leftrightarrow \mathrm{C}, \mathrm{A} \leftrightarrow \mathrm{A}, \mathrm{O} \leftrightarrow 0$
$\angle \mathrm{POA}=\angle \mathrm{COA}$

Similarly, $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\angle \mathrm{QOB}=\angle \mathrm{COB}$

Since POQ is a diameter of the circle, it is a straight line.

Therefore, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$

From equations (i) and (ii), it can be observed that
$2 \angle \mathrm{COA}+2 \angle \mathrm{COB}=180^{\circ}$
$\angle \mathrm{COA}+\angle \mathrm{COB}=90^{\circ}$
$\angle A O B=90^{\circ}$
Q. 10 Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Sol: Let us consider a circle centered at point 0 . Let P be an external point from which two tangents PA and PB are drawn to the circle which are touching the circle at point A and B respectively and $A B$ is the line segment, joining point of contacts A and B together such that it subtends $\angle A O B$ at center O of the circle.

It can be observed that

OA (radius) $\perp \mathrm{PA}$ (tangent)
Therefore, $\angle O A P=90^{\circ}$

Similarly, OB (radius) \perp PB (tangent)
$\angle O B P=90^{\circ}$

In quadrilateral OAPB,

Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90^{\circ}+\angle \mathrm{APB}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}$

Hence, it can be observed that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the linesegment joining the points of contact at the centre.
Q. 11 Prove that the parallelogram circumscribing a circle is a rhombus.

Sol:

Since ABCD is a parallelogram,

$$
\begin{align*}
& \mathrm{AB}=\mathrm{CD} \tag{1}\\
& \mathrm{BC}=\mathrm{AD} \tag{2}
\end{align*}
$$

It can be observed that
$\mathrm{DR}=\mathrm{DS}($ Tangents on the circle from point D$)$
$C R=C Q$ (Tangents on the circle from point C)
$B P=B Q($ Tangents on the circle from point $B)$
$\mathrm{AP}=\mathrm{AS}($ Tangents on the circle from point A$)$
Adding all these equations, we obtain
$D R+C R+B P+A P=D S+C Q+B Q+A S$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$C D+A B=A D+B C$

On putting the values of equations (1) and (2) in this equation, we obtain
$2 \mathrm{AB}=2 \mathrm{BC}$
$A B=B C$

Comparing equations (1), (2), and (3), we obtain
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence, ABCD is a rhombus.
Q. 12 A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the
segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths

8 cm and 6 cm respectively (see given figure). Find the sides $A B$ and $A C$.

Sol: Let the given circle touch the sides AB and AC of the triangle at point E and F respectively and the length of the line segment $A F$ be x.
 In ABC ,
$\mathrm{CF}=\mathrm{CD}=6 \mathrm{~cm}$ (Tangents on the circle from point C)
$\mathrm{BE}=\mathrm{BD}=8 \mathrm{~cm}$ (Tangents on the circle from point B)
$\mathrm{AE}=\mathrm{AF}=\mathrm{x}($ Tangents on the circle from point A$)$
$\mathrm{AB}=\mathrm{AE}+\mathrm{EB}=\mathrm{x}+8$

$B C=B D+D C=8+6=14$
$\mathrm{CA}=\mathrm{CF}+\mathrm{FA}=6+\mathrm{x}$
$2 \mathrm{~s}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$=x+8+14+6+x$
$=28+2 \mathrm{x}$
$\mathrm{s}=14+\mathrm{x}$

Area of $\triangle \mathrm{ABC}=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$
$=\sqrt{\{14+x\}((14+x)-14)((14+x)-(x+6))((14+x)-(8+x))}$
$=\sqrt{(14+x)(x)(8)(6)}$
$=4 \sqrt{3\left(14 x+x^{2}\right)}$
Area of $\triangle \mathrm{OBC}=\frac{1}{2} \times \mathrm{OD} \times \mathrm{BC}=\frac{1}{2} \times 4 \times 14=28$
Area of $\triangle \mathrm{OCA}=\frac{1}{2} \times \mathrm{OF} \times \mathrm{AC}=\frac{1}{2} \times 4 \times(6+\mathrm{x})=12+2 \mathrm{x}$
Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OE} \times \mathrm{AB}=\frac{1}{2} \times 4 \times(8+\mathrm{x})=16+2 \mathrm{x}$
Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}+$ Area of $\triangle \mathrm{OAB}$
$4 \sqrt{3\left(14 x+x^{2}\right)}=28+12+2 x+16+2 x$
$\Rightarrow 4 \sqrt{3\left(14 x+x^{2}\right)}=56+4 x$
$\Rightarrow \sqrt{3\left(14 \mathrm{x}+\mathrm{x}^{2}\right)}=14+\mathrm{x}$
$\Rightarrow 3\left(14 \mathrm{x}+\mathrm{x}^{2}\right)=(14 \mathrm{x}+\mathrm{x})^{2}$
$\Rightarrow 42 \mathrm{x}+3 \mathrm{x}^{2}=196+\mathrm{x}^{2}+28 \mathrm{x}$
$\Rightarrow 2 \mathrm{x}^{2}+14 \mathrm{x}-196=0$
$\Rightarrow \mathrm{x}^{2}+7 \mathrm{x}-98=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+14)-7(\mathrm{x}+14)=0$
$\Rightarrow(\mathrm{x}+14)(\mathrm{x}-7)=0$
Either $\mathrm{x}+14=0$ or $\mathrm{x}-7=0$
Therefore, $\mathrm{x}=-14$ and 7
However, $\mathrm{x}=-14$ is not possible as the length of the sides will be negative.
Therefore, $\mathrm{x}=7$
Hence, $A B=x+8=7+8=15 \mathrm{~cm}$
$C A=6+x=6+7=13 \mathrm{~cm}$
Q. 13 Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Sol: Let $A B C D$ be a quadrilateral circumscribing a circle centered at 0 such that it touches the circle at point P, Q, R, S. Let us join the vertices of the quadrilateral $A B C D$ to the center of the circle.

Consider $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OAS}$,
$\mathrm{AP}=\mathrm{AS}$ (Tangents from the same point)
$\mathrm{OP}=\mathrm{OS}$ (Radii of the same circle)
$\mathrm{OA}=\mathrm{OA}($ Common side $)$

$\Delta \mathrm{OAP} \cong \Delta \mathrm{OAS}$ (SSS congruence criterion)
Therefore, $\mathrm{A} \leftrightarrow \mathrm{A}, \mathrm{P} \leftrightarrow \mathrm{S}, \mathrm{O} \leftrightarrow \mathrm{O}$

And thus, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
$\angle 1=\angle 8$

Similarly,
$\angle 2=\angle 3$
$\angle 4=\angle 5$
$\angle 6=\angle 7$
$1+2+3+4+5+6+7+8=360^{\circ}$
$(1+8)+(2+3)+(4+5)+(6+7)=360^{\circ}$
$21+22+25+26=360^{\circ}$
$2(1+2)+2(5+6)=360^{\circ}$
$(1+2)+(5+6)=180^{\circ}$
$\mathrm{AOB}+\mathrm{COD}=180^{\circ}$

Similarly, we can prove that BOC $+\mathrm{DOA}=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle

