MATHEMATICS

\square
Board - \square
Class -
Topic -

Question 1.
From an external point P, tangents PA and PB are drawn to a circle with centre 0 . If $\angle \mathrm{PAB}=50^{\circ}$, then find $\angle A O B$.

Solution:

Given,

$$
\angle \mathrm{PAB}=50^{\circ}
$$

$$
\angle \mathrm{PAB}+\angle \mathrm{OAB}=90^{\circ}
$$

[\because angle between radius OA and tangent PA is 90°]
$\Rightarrow \quad 50^{\circ}+\angle \mathrm{OAB}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{OAB}=90^{\circ}-50^{\circ}=40^{\circ}$

$$
\begin{array}{rlrl}
\text { Now, } & & \mathrm{PA} & =\mathrm{PB} \\
\Rightarrow & & \angle \mathrm{PBA} & =\angle \mathrm{PAB} \\
\Rightarrow & & \angle \mathrm{PBA} & =50^{\circ} \\
\Rightarrow & & \angle \mathrm{PBA}+\angle \mathrm{OBA} & =90^{\circ}\left[\therefore \text { angle between radius } \mathrm{OB} \text { and tangent } \mathrm{PB} \text { is } 180^{\circ}\right] \\
\Rightarrow & & 50^{\circ}+\angle \mathrm{OBA} & =90^{\circ} \\
\Rightarrow & \angle \mathrm{OBA}=90^{\circ}-50^{\circ} & =40^{\circ}
\end{array}
$$

Now in $\triangle A O B$ we have

$$
\begin{array}{rlrl}
\angle \mathrm{AOB}+\angle \mathrm{ABO}+\angle \mathrm{BAO} & =180^{\circ} \\
\Rightarrow \quad \angle \mathrm{AOB}+40^{\circ}+40^{\circ} & =180^{\circ} \Rightarrow & \angle \mathrm{AOB}=180^{\circ}-80^{\circ}=100^{\circ}
\end{array}
$$

Question 2.

In given figure, PQ is a tangent at a point C to a circle with centre 0 . If AB is a diameter and $\angle \mathrm{CAB}=$ 30°, find $\angle \mathrm{PCA}$

Solution:

Construction: Join AO.
Given: PQ is tangent. AB is diameter $\angle \mathrm{CAB}=30^{\circ}$.
To Find: $\angle \mathrm{PCA}$
Solution: In $\triangle A O C, \quad A O=C O \quad(\because$ Equal radii)

$$
\begin{equation*}
\angle \mathrm{CAO}=\angle \mathrm{OCA} \quad(\because \text { Angles opposite to equal sides are equal }) \tag{i}
\end{equation*}
$$

or $\quad \angle \mathrm{CAB}=\angle \mathrm{OCA}$
But, $\quad \angle \mathrm{CAB}=30^{\circ} \quad$ So, $\angle \mathrm{OCA}=30^{\circ}$
Since, $\quad \mathrm{OC} \perp \mathrm{PQ}(\because$ Tangent is perpendicular to radius at point of contact $)$
$\Rightarrow \quad \angle \mathrm{PCO}=90^{\circ} \Rightarrow \angle \mathrm{OCA}+\angle \mathrm{PCA}=90^{\circ} \Rightarrow 30^{\circ}+\angle \mathrm{PCA}=90^{\circ}$
$\therefore \quad \angle \mathrm{PCA}=60^{\circ}$

Question 3.

In figure given, $A O B$ is a diameter of a circle with centre O and $A C$ is a tangent to the circle at A. If $\angle B O C=130^{\circ}$, then find $\angle A C O$.

Solution:

$$
\begin{aligned}
\angle \mathrm{AOC}+\angle \mathrm{BOC} & =180^{\circ} \\
{[} & \because \text { Linear Pair Axiom }] \\
\angle \mathrm{AOC}+130^{\circ} & =180^{\circ} \\
\angle \mathrm{AOC} & =180^{\circ}-130^{\circ} \\
\angle \mathrm{AOC} & =50^{\circ}
\end{aligned}
$$

Now, $\angle \mathrm{OAC}=90^{\circ}$ [angle between radius OA and tangent AC is 90°]
Now, in $\triangle A O C$,

$$
\begin{aligned}
\angle \mathrm{OAC}+\angle \mathrm{AOC}+\angle \mathrm{ACO} & =180^{\circ} \quad\left[\because \text { sum of angles in triangle is } 180^{\circ}\right] \\
90^{\circ}+50^{\circ}+\angle \mathrm{ACO} & =180^{\circ} \\
\angle \mathrm{ACO} & =180^{\circ}-140^{\circ} \\
\angle \mathrm{ACO} & =40^{\circ}
\end{aligned}
$$

Question 4.

In given figure, a circle is inscribed in a $\triangle A B C$, such that it touches the sides $A B, B C$ and $C A$ at points D, E and F respectively. If the lengths of sides $A B, B C$ and $C A$ are $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively, find the lengths of AD, BE and CF

Solution:

Given, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{CA}=10 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$

$$
\begin{array}{lrl}
\text { Let } & \mathrm{AD} & =\mathrm{AF}=x[\because \text { Tangent drawn from external } \\
\text { point to circle are equal }] \\
\therefore \quad \mathrm{DB}=\mathrm{BE} & =12-x \text { and } \mathrm{CF}=\mathrm{CE}=10-x \\
& \mathrm{BC} & =\mathrm{BE}+\mathrm{EC} \Rightarrow 8=12-x+10-x \\
\Rightarrow & x & =7 \\
\therefore & \mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm} & \text { and } \mathrm{CF}=3 \mathrm{~cm}
\end{array}
$$

Question 5.

If given figure, AP and BP are tangents to a circle with centre 0 , such that $\mathrm{AP}=5 \mathrm{~cm}$ and $\angle \mathrm{APB}=$ 60°. Find the length of chord AB.

Solution:

In $\triangle \mathrm{APB}$ we have

$$
\Rightarrow
$$

$$
\begin{aligned}
\mathrm{AP} & =\mathrm{BP} \\
\angle \mathrm{PAB} & =\angle \mathrm{PBA}
\end{aligned}
$$

Let
$[\because$ Tangents from an external point are equally inclined to segment joining centre to point]
then in $\triangle \mathrm{APB}$,

$$
\angle \mathrm{PAB}=x
$$

$$
x+x+60^{\circ}=180^{\circ}
$$

$$
2 x=180^{\circ}-60^{\circ}=120^{\circ}
$$

$$
x=60^{\circ}
$$

As all three angles of $\triangle \mathrm{APB}$ are 60°. So $\triangle \mathrm{APB}$ is an equilateral triangle.
Hence $\mathrm{AP}=\mathrm{BP}=\mathrm{AB}=5 \mathrm{~cm}$

Question 6.

In figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle, with centre 0 , in such a way that the sides $A B, B C, C D$ and $D A$ touch the circle at the points P, Q, R and S respectively. Prove that $A B+$ $C D=B C+D A$.

Solution:

We know that tangents drawn to a circle from an outer points are equal.
So,

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{AS}, \mathrm{BP}=\mathrm{BQ}, \\
& \mathrm{CR}=\mathrm{CQ} \text { and } \mathrm{DR}=\mathrm{DS} .
\end{aligned}
$$

Now, consider

$$
\begin{aligned}
& & \mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR} & =\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
\Rightarrow & & \mathrm{AB}+\mathrm{CD} & =\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Hence proved.

Question 7.
In given figure, from an external point P, two tangents PT and PS are drawn to a circle with centre 0 and radius r.If $\mathrm{PO}=2 \mathrm{r}$, show that $\angle \mathrm{OTS}=\angle \mathrm{OST}=30^{\circ}$.

Solution:

Let $\angle \mathrm{TOP}=\theta$
In right triangle OTP we have
$\therefore \quad \cos \theta=\frac{\mathrm{OT}}{\mathrm{OP}}=\frac{r}{2 r}=\frac{1}{2}=\cos 60^{\circ} \Rightarrow \theta=60^{\circ}$
Hence $\angle \mathrm{TOS}=2 \times 60=120^{\circ} \quad[\because \angle \mathrm{TOP}=\angle \mathrm{POS}$ as angles opposite to equal tangent are equal]
In Δ OTS, we have

$$
\mathrm{OT}=\mathrm{OS}
$$

[\because Equal radii]
$\Rightarrow \quad \angle \mathrm{OTS}=\angle \mathrm{OST} \quad[\because$ Angle opposite to equal sides are equal $]$
In $\triangle \mathrm{OTS}$,

$$
\begin{array}{rlrl}
\angle \mathrm{OTS}+\angle \mathrm{OST}+\angle \mathrm{TOS} & =180^{\circ} \\
2 \angle \mathrm{OST} & =60^{\circ} \\
\therefore & \angle \mathrm{OST} & =\angle \mathrm{OTS}=30^{\circ}
\end{array}
$$

Hence proved.

Question 8.
In given figure, from a point P, two tangents PT and PS are drawn to a circle with centre 0 such that $\angle \mathrm{SPT}=120^{\circ}$, Prove that $\mathrm{OP}=2 \mathrm{PS}$

Solution:

Let $\mathrm{PT}=x=\mathrm{PS}$	$[\because$ Tangent drawn from external point to circle are equal]
	$\angle \mathrm{SPT}=120^{\circ}$
In \triangle OTP and $\triangle \mathrm{OSP}$,	$\angle \mathrm{OTP}=\angle \mathrm{OSP}$
	[\because e each equal to 90°, since tangent perpendicular r radius]
	OT $=$ OS $\quad[\because$ Equal radii]
	$\mathrm{OP}=\mathrm{OP}$ [common]
\Rightarrow	$\triangle \mathrm{OSP} \cong \triangle \mathrm{OTP}$ [$\because \because$ By SAS congruence rule $]$
\therefore	$\angle \mathrm{TPO}=\angle \mathrm{SPO} \quad[\because$ By CPCT $]$
\Rightarrow	$\angle \mathrm{TPO}=\frac{1}{2} \angle \mathrm{SPT}=\frac{1}{2} \times 120=60^{\circ}$
In \triangle OTP,	$\frac{\mathrm{OP}}{x}=\operatorname{Sec} 60^{\circ}$
\Rightarrow	$\frac{\mathrm{OP}}{x}=2 \Rightarrow \mathrm{OP}=2 x \Rightarrow \mathrm{OP}=2 \mathrm{PS}$
Hence proved.	

Question 9.

In given figure, there are two concentric circles of radii 6 cm and 4 cm with centre 0 . If AP is a tangent to the larger circle and BP to the smaller circle and length of AP is 8 cm , find the length of BP

Solution:

$$
\text { In } \triangle \mathrm{OAP},
$$

$$
\Rightarrow
$$

$$
\text { In } \triangle \mathrm{OBP},
$$

$$
\begin{aligned}
\mathrm{OA} & =6 \mathrm{~cm}[\because \text { Given radius }] \\
\mathrm{OB} & =4 \mathrm{~cm}[\because \text { Given radius }] \\
\mathrm{AP} & =8 \mathrm{~cm} \\
\mathrm{OP}^{2} & =\mathrm{OA}^{2}+\mathrm{AP}^{2}=36+64=100[\because \text { Pythagoras theorem }] \\
\mathrm{OP} & =10 \mathrm{~cm} \\
\mathrm{BP}^{2} & =\mathrm{OP}^{2}-\mathrm{OB}^{2}=100-16=84[\because \text { Pythagoras theorem }] \\
\mathrm{BP} & =2 \sqrt{21} \mathrm{~cm}
\end{aligned}
$$

Long Answer Type Questions [4 Marks]

Question 10.
Prove that the lengths of tangents drawn from an external point to a circle are equal
Solution:
Given: A circle $C(\mathrm{O}, r), \mathrm{P}$ is a point outside the circle and PA and PB are tangents to a circle.
To Prove: PA = PB
Construction: Draw OA, OB and OP.
Proof: Consider triangles OAP and OBP.

[Radius is perpendicular to the tangent at the point of contact]

$$
\begin{equation*}
\mathrm{OA}=\mathrm{OB}(\text { radii }) \tag{ii}
\end{equation*}
$$

OP is common
\therefore
Hence,

$$
\begin{align*}
\Delta \mathrm{OAP} & \cong \Delta \mathrm{OBP}(\mathrm{RHS}) \tag{iii}\\
\mathrm{AP} & =\mathrm{BP}
\end{align*}
$$

[from (i), (ii) and (iii)]
(CPCT)

Question 11.
In given figure, O is the centre of a circle of radius 5 cm . Tis a point such that $O T=13 \mathrm{~cm}$ and OT intersects circle at E . If AB is a tangent to the circle at E, find the length of $A B$, where TP and TQ are two tangents to the circle.

Solution:

In \triangle OPT,	$\mathrm{OP}^{2}+\mathrm{PT}^{2}=\mathrm{OT}^{2}$	[\because Pythagoras theorem]
	$\mathrm{PT}=\sqrt{\mathrm{OT}^{2}-\mathrm{OP}^{2}}$	
	$=\sqrt{169-25}=12 \mathrm{~cm}$	
and	$\mathrm{TE}=\mathrm{OT}-\mathrm{OE}=13-5=$	
Let	$\mathrm{PA}=\mathrm{AE}=x$	[tangent from outer point A]
In \triangle TEA,	$\mathrm{TE}^{2}+\mathrm{EA}^{2}=\mathrm{TA}^{2}$	[\because Pythagoras theorem]
	$(8)^{2}+(x)^{2}=(12-x)^{2}$	
	$64+x^{2}=(12-x)^{2}$	
\Rightarrow	$64+x^{2}=144+x^{2}-24 x$	
\Rightarrow	$80=24 x \Rightarrow x=3.3 \mathrm{~cm}$	
Thus $\mathrm{AB}=2 \times 3.3 \mathrm{~cm}=6.6 \mathrm{~cm} \quad[\because \mathrm{AE}=\mathrm{EB}$, as AB is tangent to circle at E$]$		

Question 12.
Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Given: A circle $C(O, r)$ and a tangent $A B$ at a point P.
To prove: $\mathrm{OP} \perp \mathrm{AB}$
Construction: Take any point Q other than P on the tangent AB . Join OQ, intersecting circle at R.
Proof: We have,
$\mathrm{OP}=\mathrm{OR}$
$\mathrm{OQ}=\mathrm{OR}+\mathrm{RQ}$
[Radii]

$\therefore \quad \mathrm{OQ}>\mathrm{OR} \Rightarrow \mathrm{OQ}>\mathrm{OP}$

$$
[\because \mathrm{OR}=\mathrm{OP}=\text { radius }]
$$

Thus, $O P<O Q$, i.e. $O P$ is shorter than any other segment joining O to any point of $A B$. But among all line segments, joining point O to point on $A B$, shortest one is perpendicular from O on AB .
Hence,
$O P \perp A B$

Question 13.

In given figure, two equal circles, with centers 0 and 0^{\prime}, touch each other at X . 00^{\prime} produced meets the circle with Centre 0^{\prime} at A.AC is tangent to the circle with centre 0 , at the point $\mathrm{C} . \mathrm{O}^{\prime} \mathrm{D}$ is perpendicular to $A C$. Find the value of $\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}$.

Solution:

AC is tangent to the circle with centre O .
In $\triangle \mathrm{ADO}^{\prime}$ and $\triangle \mathrm{ACO}, \quad \angle \mathrm{ADO}^{\prime}=\angle \mathrm{ACO}$
(each 90°) $\angle \mathrm{DAO}=\angle \mathrm{CAO} \quad$ (common)

\therefore By AA criterion, $\quad \frac{\mathrm{AO}^{\prime}}{\mathrm{AO}}=\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}} \quad[\because$ corresponding parts of similar triangle $]$

$$
\mathrm{AO}=\mathrm{AO}^{\prime}+\mathrm{O}^{\prime} \mathrm{X}+\mathrm{XO}=r+r+r=3 r
$$

$$
\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{r}{3 r}
$$

$$
\left[\therefore \mathrm{AO}=\mathrm{AO}^{\prime}+\mathrm{O}^{\prime} \mathrm{X}+\mathrm{XO}=3 \mathrm{AO}\right]
$$

$$
\Rightarrow \quad \frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{1}{3}
$$

Question 14.

In given figure, $A B$ is a chord of a circle, with centre 0 , such that $A B=16 \mathrm{~cm}$ and radius of circle is
10 cm . Tangents at A and B intersect each other at P. Find the length of PA

Solution:

Let

$$
\text { PL }=x
$$

As OP is perpendicular bisector of AB . Then

In $\triangle \mathrm{ALO}$,

$$
\mathrm{AL}=\mathrm{BL}=8 \mathrm{~cm}
$$

$$
\mathrm{OL}^{2}=\mathrm{OA}^{2}-\mathrm{AL}^{2}=10^{2}-8^{2}=36 \Rightarrow \mathrm{OL}=6 \mathrm{~cm}
$$

$$
\mathrm{AP}^{2}=\mathrm{OP}^{2}-\mathrm{OA}^{2} \quad[\because \text { Pythagoras theorem }]
$$

In $\triangle \mathrm{OAP}$,

$$
\mathrm{AP}^{2}=(x+6)^{2}-10^{2}
$$

$$
\mathrm{AP}^{2}=\mathrm{AL}^{2}+\mathrm{PL}^{2}
$$

[\because Pythagoras theorem]
In $\triangle \mathrm{ALP}$,
$\mathrm{AP}^{2}=x^{2}+64$
Now,

$$
(x+6)^{2}-10^{2}=x^{2}+64
$$

$$
x^{2}+12 x+36-100=x^{2}+64
$$

$\Rightarrow \quad 12 x=128$
\Rightarrow

From $\triangle \mathrm{ALP}$,

$$
\begin{aligned}
\mathrm{AP}^{2} & =\left(\frac{32}{3}\right)^{2}+64 \\
& =\frac{1024}{9}+64 \\
& =\frac{1024+576}{9} \mathrm{~cm} \\
\mathrm{AP}^{2} & =\frac{1600}{9} \mathrm{~cm} \\
\mathrm{AP} & =\frac{40}{3} \mathrm{~cm}=13.3 \mathrm{~cm}
\end{aligned}
$$

