1. Mr. Kumar deposits Rs. 600 per month in a recurring deposited account for $\mathbf{1 2}$ months.

Find the amount he will receive at the lime of maturity at the rate of $6 \%$ per annum.
Solution:
In this account the amount Rs. 600 deposited in 1st month will remain in the bank for 12 month and it will earn interest for 12 months. The amount Rs. 600 deposited in the 2nd month will earn interest for 11 months \& so on.
$I=P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$
$=600 \times \frac{12 \times 13}{2 \times 12} \times \frac{6}{100}$
$=\frac{36 \times 13}{2}=18 \times 13=$ Rs 234
$\therefore$ Total amount on maturity
= Rs. (600 X 12) + Rs. 234
= Rs. 7200 + Rs. 234
= Rs. 7434
2. Jaya wants to receive Rs. 41490 at the end of 5 years by depositing a certain sum of money on a monthly basis in a bank paying 6\% simple interest p.a. what is the monthly installment?

## Solution:

Let the monthly installment be P
Here, $\mathrm{t}=5$ years $=60$ months $\mathrm{r}=6 \%$
Total deposited money in the bank $=60 \mathrm{P}$
Period of reccurring deposit $N=\frac{n(n+1)}{24}$
$=\frac{60(60+1)}{24}=\frac{305}{2}$ years
Interest $=\frac{\mathrm{PNr}}{100}=\mathrm{P} \times \frac{305}{2} \times \frac{6}{100}$
The amount due $=60 \mathrm{P}+9.15 \mathrm{P}=69.15 \mathrm{P}$
$\therefore 69.15 \mathrm{P}=41490$
$P=\frac{(41490)}{69.15}=600$
$\therefore$ Monthly installment $=$ Rs. 600
3. Mr. Kalra invests Rs. $\mathbf{5 0 0}$ every month for $\mathbf{2 4}$ months in a bank and collects Rs. $\mathbf{1 2 7 5 0}$ at the end of the term. Find the rate of simple interest paid by the bank on this recurring deposit.

Solution:
Let rate of interest be r \%
$\mathrm{P}=$ Rs.500, $\mathrm{n}=24$ months
$\mathrm{N}=\frac{\mathrm{n}(\mathrm{n}+1)}{24}=\frac{24(24+1)}{24}=25$ years
Amount deposited with the bank $=$ Rs. $500 \times 24=$ Rs. 12000
Interest $=\frac{\mathrm{PNr}}{100}=\frac{500 \times 25 \times \mathrm{r}}{100}=125 \mathrm{r}$
$\therefore 12000+125 \mathrm{r}=12750$
Or, 125 r = 750
$r=\frac{750}{125}=6$
$\therefore$ Rate of interest $=6 \%$
4. Which is the better investment Rs. 20000 in a saving deposit with a bank for $\mathbf{3}$ years the interest being compounded half - yearly at the rate of $\mathbf{6 \%}$ or Rs. 600 per month in a recurring deposit with a bank paying simple interest at $6 \%$ p.a. for 3 years?

## Solution:

For saving deposit, $p=20,000$
$\mathrm{t}=3$ years, $\mathrm{n}=6$ half years
$r=6 \%$ p.a. $=3 \%$ per half year
$A=P\left(1+\frac{r}{100}\right)^{n}=20000\left(1+\frac{3}{100}\right)^{6}=20000(1.03)^{6}$
$\log \mathrm{A}=\log 20000+6 \log (1.03)$
$=4.3010+6(0.0128)$
$=4.3010+0.0768=4.3778$
$\mathrm{A}=\operatorname{antilog}(4.3778)$
$=23870$
$\therefore$ Maturity value $=$ Rs. 23,870

For recurring deposit,
$P=600, t=3$ years, $n=36$ months
$\mathrm{N}=\frac{\mathrm{n}(\mathrm{n}+1)}{24}=\frac{36 \times 37}{24}=\frac{111}{2}$
$r=6 \%$
Amount deposited in the bank $=36 \times 600=21,600$
$\therefore$ Interest $=\frac{\mathrm{PNr}}{100}$
$=600 \times \frac{111}{2} \times \frac{6}{100}$
$=1998$
Maturity value $=21600+1998$
= Rs. 23598
The former is better.
5. Naseem has 5 years Recurring Deposit account in Punjab National Bank and deposit Rs $\mathbf{2 4 0}$ per month. If she receives Rs $\mathbf{1 7 , 6 9 4}$ at the time of maturity. Find the rate of interest.

## Solution:

Here if $\mathrm{r} \%$ be the rate of interest.
Maturity value $=\operatorname{Rs}(240 \times 60)+\operatorname{Rs}\left(240 \times \frac{60 \times 61}{2 \times 12} \times \frac{r}{100}\right)$
$17,694=14,400+366 r$
$366 \mathrm{r}=3,294$
$r=9 \%$
6. Zafarullah has a recurring deposit. The list price of the television be 12,500 account in a bank for $3 \underline{1} / 2$ years at $9.5 \%$ S.I p.a. If he gets Rs $\mathbf{7 8 , 6 3 8}$ at the time of maturity. Find the monthly installment.

## Solution:

$$
\begin{aligned}
& \text { Maturity value }=\operatorname{Rs}(\mathrm{x} \times 42)+\operatorname{Rs}\left(\mathrm{x} \times \frac{42 \times 43}{2 \times 12} \times \frac{19}{200}\right) \\
& \Rightarrow 78,638=42 \mathrm{x}+\frac{5,719 \mathrm{x}}{800} \\
& \Rightarrow \frac{39,319}{800} \mathrm{x}=78,638 \\
& \Rightarrow \mathrm{x}=1600
\end{aligned}
$$

Hence, the monthly installment was of Rs. 1600.
7. Kiran deposited 200 per month for $\mathbf{3 6}$ months in a bank's recurring deposit account. If the bank pays interest at the rate of $11 \%$ per annum, find the amount she gets on maturity.

Solution:

$$
\begin{aligned}
& \text { Interest }=\frac{P n(n+1) \times R}{2,400} \\
& =\frac{200 \times 36 \times 37 \times 11}{2,400}=3 \times 37 \times 11 \\
& =\text { Rs } 1,221
\end{aligned}
$$

Sum deposited $=36 \times 200=$ Rs 7,200
$\Rightarrow$ Amount $=7,200+1,221=$ Rs 8,421
8. Each of $A$ and $B$ both opened recurring deposit accounts in a bank. If $A$ deposited Rs $\mathbf{1 , 2 0 0}$ per month for 3 years and $B$ deposited Rs 1,500 per month for $2 \mathbb{1} / 2$ years, find, on maturity, who will get more amount and by how much? The rate of interest paid by the bank is $\mathbf{1 0 \%}$ per annum.

## Solution:

For A
Installment per month (P) = Rs 1,200
Number of months ( n ) $=36$
Rate of interest (r) = 10\% p.a.
$\therefore$ S. I. $=P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$
$=1,200 \times \frac{36(36+1)}{2 \times 12} \times \frac{10}{100}$
$=1,200 \times \frac{1332}{24} \times \frac{10}{100}=$ Rs 6,660
The amount that A will get at the time of maturity
$=\operatorname{Rs}(1,200 \times 36)+\operatorname{Rs} 6,660$
$=\operatorname{Rs} 43,200+\operatorname{Rs} 6,660$
$=$ Rs 49,860
For B
Installment per month (P) = Rs 1,500
Number of months ( n ) $=30$
Rate of interest (r) = 10\% p.a.

## MATHEMATICS

$\therefore$ S.I. $=\mathrm{P} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2 \times 12} \times \frac{\mathrm{r}}{100}$
$=1,500 \times \frac{30(30+1)}{2 \times 12} \times \frac{10}{100}$
$=1,500 \times \frac{930}{24} \times \frac{10}{100}=$ Rs 5,812.50
The amount that $B$ will get at the time of maturity
$=\operatorname{Rs}(1,500 \times 30)+\operatorname{Rs} 5,812.50$
$=$ Rs $45,000+$ Rs 5,812.50
$=$ Rs 50,812.50
Difference between both amounts = Rs 50,812.50 - Rs 49,860 = Rs 952.50
Then B will get more money than A by Rs 952.50
9. Ashish deposits a certain sum of money every month is a Recurring Deposit Account for a period of 12 months. If the bank pays interest at the rate of $\mathbf{1 1 \%}$ p.a. and Ashish gets Rs 12,715 as the maturity value of this account, what sum of money did money did he pay every month?

## Solution:

Let installment per month (P) = Rs y
Number of months ( n ) = 12
Rate of interest $(r)=11 \%$ p.a.
$\therefore$ S.I. $=\mathrm{P} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2 \times 12} \times \frac{\mathrm{r}}{100}$
$=\mathrm{y} \times \frac{12(12+1)}{2 \times 12} \times \frac{11}{100}$
$=\mathrm{y} \times \frac{156}{24} \times \frac{11}{100}$
$=$ Rs 0.715 y
Maturity value $=R s(y \times 12)+$ Rs $0.715 \mathrm{y}=$ Rs 12.715 y
Given maturity value $=$ Rs 12,715
Then Rs 12.715 y = Rs 12,715
$\Rightarrow \mathrm{y}=\frac{12,715}{12.715}$
$=$ Rs 1000
10. Mohan deposits Rs. 80 per month in a cumulative deposited account for six years. Find the amount payable to him on maturity, if the rate of interest is 6\% per annum.

## Solution:

The bank keeps first installment for 72 months

The bank keeps 2nd installment for 71months

The bank keeps 3rd installment for 70 months
$\therefore \frac{\text { The bank keeps the last installment for } 1 \text { month }}{\text { Total time }=72+71 \ldots+2+1}$
$\mathrm{N}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\mathrm{N}=\frac{72(72+1)}{2}$ months
$N=\frac{72 \times 73}{2 \times 12}$ years
$\mathrm{N}=219$ years
$\mathrm{I}=\frac{\mathrm{PNr}}{100}=\frac{\mathrm{Rs} 80 \times 219 \times 6}{\text { Rs } 100}$
Rs 1051.20
Total amount deposited in 6 years $=6 \times 12 \times$ Rs. 80
= Rs. 5760
Total amount received after maturity = Rs. 5760 + Rs. 1051.20
= Rs. 6811.20

